Conjugated dicarboxylate anodes for Li-ion batteries.

作者: M. Armand , S. Grugeon , H. Vezin , S. Laruelle , P. Ribière

DOI: 10.1038/NMAT2372

关键词:

摘要: Present Li-ion batteries for portable electronics are based on inorganic electrodes. For upcoming large-scale applications the notion of materials sustainability produced by made through eco-efficient processes, such as renewable organic electrodes, is crucial. We here report two salts, Li(2)C(8)H(4)O(4) (Li terephthalate) and Li(2)C(6)H(4)O(4)(Li trans-trans-muconate), with carboxylate groups conjugated within molecular core, which respectively capable reacting one extra Li per formula unit at potentials 0.8 1.4 V, giving reversible capacities 300 150 mA h g(-1). The activity maintained 80 degrees C polyethyleneoxide-based electrolytes. A noteworthy advantage Li(2)C(6)H(4)O(4) negative electrodes their enhanced thermal stability over carbon in 1 M LiPF(6) ethylene carbonate-dimethyl carbonate electrolytes, should result safer cells. Moreover, bio-inspired materials, both compounds metabolites aromatic hydrocarbon oxidation, terephthalic acid available abundance from recycling polyethylene terephthalate.

参考文章(18)
Advances in lithium-ion batteries Kluwer Academic/Plenum Publishers. ,(2002) , 10.1007/B113788
Tsutomu Ohzuku, Atsushi Ueda, Norihiro Yamamoto, Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells Journal of The Electrochemical Society. ,vol. 142, pp. 1431- 1435 ,(1995) , 10.1149/1.2048592
R. W. Kates, Environment and development. Sustainability science. Science. ,vol. 292, pp. 641- 642 ,(2001) , 10.1126/SCIENCE.1059386
M. Armand, J.-M. Tarascon, Building better batteries Nature. ,vol. 451, pp. 652- 657 ,(2008) , 10.1038/451652A
A.G MacDiarmid, L.S Yang, W.S Huang, B.D Humphrey, Polyaniline: Electrochemistry and application to rechargeable batteries Synthetic Metals. ,vol. 18, pp. 393- 398 ,(1987) , 10.1016/0379-6779(87)90911-8
X. Han, C. Chang, L. Yuan, T. Sun, J. Sun, Aromatic Carbonyl Derivative Polymers as High-Performance Li-Ion Storage Materials† Advanced Materials. ,vol. 19, pp. 1616- 1621 ,(2007) , 10.1002/ADMA.200602584
Petr Novák, Klaus Müller, K. S. V. Santhanam, Otto Haas, Electrochemically Active Polymers for Rechargeable Batteries. Chemical Reviews. ,vol. 97, pp. 207- 282 ,(1997) , 10.1021/CR941181O
P. Thompson, D. E. Cox, J. B. Hastings, Rietveld refinement of Debye–Scherrer synchrotron X‐ray data from Al2O3 Journal of Applied Crystallography. ,vol. 20, pp. 79- 83 ,(1987) , 10.1107/S0021889887087090
Klaus Bechgaard, Vernon D. Parker, Mono-, di-, and trications of hexamethoxytriphenylene. Novel anodic trimerization Journal of the American Chemical Society. ,vol. 94, pp. 4749- 4750 ,(1972) , 10.1021/JA00768A063
Thierry Le Gall, Kenneth H. Reiman, Martin C. Grossel, John R. Owen, Poly(2,5-dihydroxy-1,4-benzoquinone-3,6-methylene): a new organic polymer as positive electrode material for rechargeable lithium batteries Journal of Power Sources. ,vol. 119-121, pp. 316- 320 ,(2003) , 10.1016/S0378-7753(03)00167-8