Molecular properties of lysine-2,3-aminomutase.

作者: K B Song , P A Frey

DOI: 10.1016/S0021-9258(20)89497-6

关键词:

摘要: Lysine-2,3-aminomutase purified from Clostridium subterminale SB4 is reported to exhibit an apparent subunit Mr of 48,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the undenatured enzyme exhibits 285,000, electrophoretic mobility permeation chromatography (Chirpich, T. P., Zappia, V., Costilow, R. N., Barker, H. A. (1970) J. Biol. Chem. 245, 1778-1789). The diffusion coefficient 3.36 x 10(-7) cm2/s, quasielastic light scattering. overall calculated published sedimentation 259,000. Cross-linking experiments using glutaraldehyde dithiobis(succinimidylpropionate) cross-linking reagents indicate that has a hexameric quaternary structure. number major cyanogen bromide peptides, compared with methionine content enzyme, consistent subunits being identical, isoelectric focusing also identical subunits. circular dichroism indicates it highly ordered structure, which estimated consist 26% alpha-helix 48% beta-sheet. contains approximately six molecules pyridoxal 5'-phosphate per hexamer, phenyl-hydrazine method. amino acid analysis after performic oxidation, 13 cysteine residues subunit. Six sulfhydryl groups hexamer react readily 5,5'-dithiobis-2-nitrobenzoate, indicating one group accessible

参考文章(13)
V. Zappia, H.A. Barker, Studies on Lysine-2,3-Aminomutase: Subunit Structure and Sulfhydryl Groups Biochimica et Biophysica Acta. ,vol. 207, pp. 505- 513 ,(1970) , 10.1016/S0005-2795(70)80013-7
Stanford Moore, On the determination of cystine as cysteic acid. Journal of Biological Chemistry. ,vol. 238, pp. 235- 237 ,(1963) , 10.1016/S0021-9258(19)83985-6
M L Moss, P A Frey, Activation of lysine 2,3-aminomutase by S-adenosylmethionine. Journal of Biological Chemistry. ,vol. 265, pp. 18112- 18115 ,(1990) , 10.1016/S0021-9258(17)44724-7
R M Petrovich, F J Ruzicka, G H Reed, P A Frey, Metal cofactors of lysine-2,3-aminomutase. Journal of Biological Chemistry. ,vol. 266, pp. 7656- 7660 ,(1991) , 10.1016/S0021-9258(20)89498-8
M Moss, P A Frey, The role of S-adenosylmethionine in the lysine 2,3-aminomutase reaction. Journal of Biological Chemistry. ,vol. 262, pp. 14859- 14862 ,(1987) , 10.1016/S0021-9258(18)48103-3
Hiroshi Wada, Esmond E. Snell, The enzymatic oxidation of pyridoxine and pyridoxamine phosphates. Journal of Biological Chemistry. ,vol. 236, pp. 2089- 2095 ,(1961) , 10.1016/S0021-9258(18)64134-1
J Baraniak, M L Moss, P A Frey, Lysine 2,3-aminomutase. Support for a mechanism of hydrogen transfer involving S-adenosylmethionine. Journal of Biological Chemistry. ,vol. 264, pp. 1357- 1360 ,(1989) , 10.1016/S0021-9258(18)94194-3
T.P. Chirpich, V. Zappia, R.N. Costilow, H.A. Barker, Lysine 2,3-aminomutase. Purification and properties of a pyridoxal phosphate and S-adenosylmethionine-activated enzyme. Journal of Biological Chemistry. ,vol. 245, pp. 1778- 1789 ,(1970) , 10.1016/S0021-9258(19)77160-9
PERRY A. FREY, MARCIA MOSS, ROBERT PETROVICH, JANINA BARANIAK, The roles of S-adenosylmethionine and pyridoxal phosphate in the lysine 2,3-aminomutase reaction. Annals of the New York Academy of Sciences. ,vol. 585, pp. 368- 378 ,(1990) , 10.1111/J.1749-6632.1990.TB28069.X