A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients

作者: Mehdi Dehghan , Ameneh Taleei

DOI: 10.1016/J.CPC.2009.08.015

关键词:

摘要: Abstract We propose a compact split-step finite difference method to solve the nonlinear Schrodinger equations with constant and variable coefficients. This improves accuracy of by introducing scheme for discretization space while this improvement does not reduce stability range increase computational cost. also preserves some conservation laws. Numerical tests are presented confirm theoretical results new numerical using cubic equation coefficients Gross–Pitaevskii equation.

参考文章(64)
A. Kurtinaitis, F. Ivanauskas, Finite Difference Solution Methods for a System of the Nonlinear Schrödinger Equations Nonlinear Analysis-Modelling and Control. ,vol. 9, pp. 247- 258 ,(2004) , 10.15388/NA.2004.9.3.15156
O. Bang, P. L. Christiansen, K. Ø. Rasmussen, Y. B. Gaididei, The role of nonlinearity in modelling energy transfer in Scheibe aggregates Springer Berlin Heidelberg. pp. 317- 336 ,(1995) , 10.1007/978-3-662-08994-1_24
J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case Journal of the American Mathematical Society. ,vol. 12, pp. 145- 171 ,(1999) , 10.1090/S0894-0347-99-00283-0
Govind P. Agrawal, Nonlinear Fiber Optics ,(1989)
K. W. Morton, D. F. Mayers, Numerical Solution of Partial Differential Equations Numerical Solution of Partial Differential Equations: An Introduction. ,(2005) , 10.1017/CBO9780511812248
Annick Pouquet, Pierre-Louis Sulem, Maurice Meneguzzi, Small-Scale Structures in Three-Dimensional Hydrodynamic and Magnetohydrodynamic Turbulence ,(2013)
J. M. SANZ-SERNA, J. G. VERWER, Conerservative and Nonconservative Schemes for the Solution of the Nonlinear Schrödinger Equation Ima Journal of Numerical Analysis. ,vol. 6, pp. 25- 42 ,(1986) , 10.1093/IMANUM/6.1.25