Face enumeration on simplicial complexes

作者: Steven Klee , Isabella Novik

DOI: 10.1007/978-3-319-24298-9_26

关键词:

摘要: In this chapter we survey many exciting developments on the face numbers of simplicial complexes from past two decades. We focus whose geometric realizations are (homology) manifolds, as well manifolds with additional combinatorial structure such balanced or flag manifolds. The discussed results range Upper Bound Theorem for to Generalized Lower polytopes.

参考文章(85)
Generic Initial Ideals Six Lectures on Commutative Algebra. pp. 119- 186 ,(1998) , 10.1007/978-3-0346-0329-4_2
Richard P. Stanley, The Upper Bound Conjecture and Cohen‐Macaulay Rings Studies in Applied Mathematics. ,vol. 54, pp. 135- 142 ,(1975) , 10.1002/SAPM1975542135
Eran Nevo, Francisco Santos, Stedman Wilson, Many triangulated odd-dimensional spheres Mathematische Annalen. ,vol. 364, pp. 737- 762 ,(2016) , 10.1007/S00208-015-1232-X
Ruth Charney, Michael Davis, The Euler characteristic of a nonpositively curved, piecewise Euclidean manifold. Pacific Journal of Mathematics. ,vol. 171, pp. 117- 137 ,(1995) , 10.2140/PJM.1995.171.117
Satoshi Murai, Martina Juhnke-Kubitzke, Balanced generalized lower bound inequality for simplicial polytopes arXiv: Combinatorics. ,(2015)
Jan Hladký, Michal Adamaszek, Upper bound theorem for odd-dimensional flag manifolds arXiv: Combinatorics. ,(2015)
Frank H. Lutz, Triangulated Manifolds with Few Vertices: Combinatorial Manifolds arXiv: Combinatorics. ,(2005)
Gil Kalai, Many triangulated spheres Discrete & Computational Geometry. ,vol. 3, pp. 1- 14 ,(1988) , 10.1007/BF02187893