Many triangulated spheres

作者: Gil Kalai

DOI: 10.1007/BF02187893

关键词: MathematicsSPHERESAsymptotic formulaCombinatoricsFundamental theoremUpper and lower boundsDiscrete mathematicsTheoretical computer scienceComputational Theory and MathematicsGeometry and topologyDiscrete Mathematics and Combinatorics

摘要: Lets(d, n) be the number of triangulations withn labeled vertices ofSd?1, (d?1)-dimensional sphere. We extend a construction Billera and Lee to obtain large family triangulated spheres. Our shows that logs(d, n)?C1(d)n[(d?1)/2], while known upper bound is n)≤C2(d)n[d/2] logn. Letc(d, combinatorial types simpliciald-polytopes vertices. (Clearly,c(d, n)≤s(d, n).) Goodman Pollack have recently proved bound: logc(d, n)≤d(d+1)n logn. Combining this forc(d, with our lower bounds fors(d, n), we obtain, for everyd?5, limn??(c(d, n)/s(d, n))=0. The cased=4 left open. (Steinitz's fundamental theorem asserts thats(3,n)=c(3,n), everyn.) also prove that, everyb?4, limd??(c(d, d+b)/s(d, d+b))=0. (Mani thats(d, d+3)=c(d, d+3), everyd.) Lets(n) spheres logs(n)=20.69424n(1+o(1)). same asymptotic formula describes manifolds

参考文章(40)
Richard P. Stanley, The Upper Bound Conjecture and Cohen‐Macaulay Rings Studies in Applied Mathematics. ,vol. 54, pp. 135- 142 ,(1975) , 10.1002/SAPM1975542135
Gopal Danaraj, Victor Klee, Which Spheres are Shellable Annals of discrete mathematics. ,vol. 2, pp. 33- 52 ,(1978) , 10.1016/S0167-5060(08)70320-0
A. Altshuler, J. Bokowski, L. Steinberg, The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes Discrete Mathematics. ,vol. 31, pp. 115- 124 ,(1980) , 10.1016/0012-365X(80)90029-1
Jürgen Bokowski, Bernd Sturmfels, Polytopal and nonpolytopal spheres an algorithmic approach Israel Journal of Mathematics. ,vol. 57, pp. 257- 271 ,(1987) , 10.1007/BF02766213
ANDERS BJÖRNER, GIL KALAI, On f -vectors and homology Annals of the New York Academy of Sciences. ,vol. 555, pp. 63- 80 ,(1989) , 10.1111/J.1749-6632.1989.TB22438.X
W.T Tutte, On the enumeration of convex polyhedra Journal of Combinatorial Theory, Series B. ,vol. 28, pp. 105- 126 ,(1980) , 10.1016/0095-8956(80)90059-3
W. T. Tutte, A Census of Planar Triangulations Canadian Journal of Mathematics. ,vol. 14, pp. 21- 38 ,(1962) , 10.4153/CJM-1962-002-9
Amos Altshuler, Leon Steinberg, ENUMERATION OF THE QUASISIMPLICIAL 3-SPHERES AND 4-POLYTOPES WITH EIGHT VERTICES Pacific Journal of Mathematics. ,vol. 113, pp. 269- 288 ,(1984) , 10.2140/PJM.1984.113.269
David Barnette, The triangulations of the 3-sphere with up to 8 vertices Journal of Combinatorial Theory, Series A. ,vol. 14, pp. 37- 52 ,(1973) , 10.1016/0097-3165(73)90062-9