Evaluation of Clusterings -- Metrics and Visual Support

作者: Elke Achtert , Sascha Goldhofer , Hans-Peter Kriegel , Erich Schubert , Arthur Zimek

DOI: 10.1109/ICDE.2012.128

关键词:

摘要: … Here, we provide a tool to visually support the assessment of clustering results in comparing multiple clusterings. Along the way, the suitability of a couple of clustering comparison …

参考文章(15)
Elke Achtert, Ahmed Hettab, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek, Spatial outlier detection: data, algorithms, visualizations symposium on large spatial databases. pp. 512- 516 ,(2011) , 10.1007/978-3-642-22922-0_41
Elke Achtert, Hans-Peter Kriegel, Arthur Zimek, ELKI: A Software System for Evaluation of Subspace Clustering Algorithms statistical and scientific database management. pp. 580- 585 ,(2008) , 10.1007/978-3-540-69497-7_41
Elke Achtert, Hans-Peter Kriegel, Lisa Reichert, Erich Schubert, Remigius Wojdanowski, Arthur Zimek, Visual evaluation of outlier detection models database systems for advanced applications. pp. 396- 399 ,(2010) , 10.1007/978-3-642-12098-5_34
Elke Achtert, Thomas Bernecker, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek, ELKI in Time: ELKI 0.2 for the Performance Evaluation of Distance Measures for Time Series symposium on large spatial databases. pp. 436- 440 ,(2009) , 10.1007/978-3-642-02982-0_35
Hans-Peter Kriegel, Martin Ester, Jörg Sander, Xiaowei Xu, A density-based algorithm for discovering clusters in large spatial Databases with Noise knowledge discovery and data mining. pp. 226- 231 ,(1996)
Hans‐Peter Kriegel, Peer Kröger, Jörg Sander, Arthur Zimek, Density‐based clustering Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery. ,vol. 1, pp. 231- 240 ,(2011) , 10.1002/WIDM.30
William M. Rand, Objective Criteria for the Evaluation of Clustering Methods Journal of the American Statistical Association. ,vol. 66, pp. 846- 850 ,(1971) , 10.1080/01621459.1971.10482356
Darius Pfitzner, Richard Leibbrandt, David Powers, Characterization and evaluation of similarity measures for pairs of clusterings Knowledge and Information Systems. ,vol. 19, pp. 361- 394 ,(2009) , 10.1007/S10115-008-0150-6
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
Stephan Günnemann, Ines Färber, Emmanuel Müller, Ira Assent, Thomas Seidl, External evaluation measures for subspace clustering Proceedings of the 20th ACM international conference on Information and knowledge management - CIKM '11. pp. 1363- 1372 ,(2011) , 10.1145/2063576.2063774