Visual evaluation of outlier detection models

作者: Elke Achtert , Hans-Peter Kriegel , Lisa Reichert , Erich Schubert , Remigius Wojdanowski

DOI: 10.1007/978-3-642-12098-5_34

关键词:

摘要: Many outlier detection methods do not merely provide the decision for a single data object being or an outlier. Instead, many approaches give “outlier score” factor” indicating “how much” respective is Such scores differ widely in their range, contrast, and expressiveness between different models. Even one same model, score can indicate degree of “outlierness” sets regions characteristics set. Here, we demonstrate visualization tool based on unification that allows to compare evaluate visually even high dimensional data.

参考文章(16)
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek, Outlier Detection in Axis-Parallel Subspaces of High Dimensional Data Advances in Knowledge Discovery and Data Mining. pp. 831- 838 ,(2009) , 10.1007/978-3-642-01307-2_86
Elke Achtert, Hans-Peter Kriegel, Arthur Zimek, ELKI: A Software System for Evaluation of Subspace Clustering Algorithms statistical and scientific database management. pp. 580- 585 ,(2008) , 10.1007/978-3-540-69497-7_41
Fabrizio Angiulli, Clara Pizzuti, Fast Outlier Detection in High Dimensional Spaces european conference on principles of data mining and knowledge discovery. pp. 15- 26 ,(2002) , 10.1007/3-540-45681-3_2
Raymond T. Ng, Edwin M. Knorr, Algorithms for Mining Distance-Based Outliers in Large Datasets very large data bases. pp. 392- 403 ,(1998)
Elke Achtert, Thomas Bernecker, Hans-Peter Kriegel, Erich Schubert, Arthur Zimek, ELKI in Time: ELKI 0.2 for the Performance Evaluation of Distance Measures for Time Series symposium on large spatial databases. pp. 436- 440 ,(2009) , 10.1007/978-3-642-02982-0_35
Scientific and Statistical Database Management Lecture Notes in Computer Science. ,vol. 5566, ,(2009) , 10.1007/978-3-642-02279-1
Vic Barnett, Toby Lewis, Outliers in Statistical Data ,(1978)
Hans-Peter Kriegel, Matthias S hubert, Arthur Zimek, Angle-based outlier detection in high-dimensional data Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD 08. pp. 444- 452 ,(2008) , 10.1145/1401890.1401946
Hans-Peter Kriegel, Peer Kröger, Erich Schubert, Arthur Zimek, LoOP Proceeding of the 18th ACM conference on Information and knowledge management - CIKM '09. pp. 1649- 1652 ,(2009) , 10.1145/1645953.1646195
Yaling Pei, Osmar Zaiane, Yong Gao, An Efficient Reference-Based Approach to Outlier Detection in Large Datasets international conference on data mining. pp. 478- 487 ,(2006) , 10.1109/ICDM.2006.17