Eigenrays in 3D heterogeneous anisotropic media: Part I -- Kinematics, Variational formulation

作者: Igor Ravve , Zvi Koren

DOI:

关键词:

摘要: Parts V, VI and VII of this study are dedicated to the computation paraxial rays dynamic characteristics along stationary obtained numerically in Part III. In part (Part V), we formulate linear, second-order, Jacobi ray tracing equation. VI, compare Lagrangian Hamiltonian approaches heterogeneous isotropic anisotropic media; demonstrate that two compatible derive relationships between Lagrangian's Hamiltonian's Hessian matrices. VII, apply a similar finite-element solver, as used for kinematic tracing, compute source any point ray. The our include relative geometric spreading phase correction factor due caustics (i.e., amplitude Green's function waves propagating 3D media). basic solution equation is shift vector plane normal direction at each central A general defined by linear combination up four solutions, corresponds specific initial conditions related coordinates source. We define solutions with pairs condition sets: point-source plane-wave. For proposed conditions, Jacobian relate it anisotropy. Finally, introduce new parameter, referred normalized geometrical spreading, considered measure complexity propagated wave/ray phenomena, hence, propose using criterion based on parameter qualifying associated given solution.

参考文章(65)
N. Rawlinson, J. Hauser, M. Sambridge, Seismic ray tracing and wavefront tracking in laterally heterogeneous media Advances in Geophysics Volume 49. ,vol. 49, pp. 203- 273 ,(2008) , 10.1016/S0065-2687(07)49003-3
Clifford Thurber, Junho Um, A fast algorithm for two-point seismic ray tracing Bulletin of the Seismological Society of America. ,vol. 77, pp. 972- 986 ,(1987)
P. E. Ecoublet, S. C. Singh, C. H. Chapman, G. M. Jackson, Bent‐ray traveltime tomography and migration without ray tracing Geophysical Journal International. ,vol. 149, pp. 633- 645 ,(2002) , 10.1046/J.1365-246X.2002.01665.X
Vlastislav Červený, A note on two-point paraxial travel times Studia Geophysica Et Geodaetica. ,vol. 57, pp. 267- 275 ,(2013) , 10.1007/S11200-012-0373-6
T. J. Moser, Shortest path calculation of seismic rays Geophysics. ,vol. 56, pp. 59- 67 ,(1991) , 10.1190/1.1442958
D. A. Waltham, Two-point ray tracing using Fermat's principle Geophysical Journal International. ,vol. 93, pp. 575- 582 ,(1988) , 10.1111/J.1365-246X.1988.TB03883.X
RICHARD L. GIBSON, ARCANGELO G. SENA, M. NAFI TOKSOZ, PARAXIAL RAY TRACING IN 3D INHOMOGENEOUS, ANISOTROPIC MEDIA1 Geophysical Prospecting. ,vol. 39, pp. 473- 504 ,(1991) , 10.1111/J.1365-2478.1991.TB00324.X
N.S. Shashidhar, G.V. Anand, Eigenray Tracing in an Ocean Using Fermat's Principle Journal of Sound and Vibration. ,vol. 186, pp. 231- 243 ,(1995) , 10.1006/JSVI.1995.0446
Dhananjay Kumar, Mrinal K. Sen, Robert J. Ferguson, Traveltime calculation and prestack depth migration in tilted transversely isotropic media GEOPHYSICS. ,vol. 69, pp. 37- 44 ,(2004) , 10.1190/1.1649373
Vladimir Y. Grechka, George A. McMechan, 3-D two-point ray tracing for heterogeneous, weakly transversely isotropic media Geophysics. ,vol. 61, pp. 1883- 1894 ,(1996) , 10.1190/1.1444103