Localized nonlinear, soliton-like waves in two-dimensional anharmonic lattices

作者: Alexander P. Chetverikov , Wecrner Ebeling , Manuel G. Velarde

DOI: 10.1016/J.WAVEMOTI.2011.04.005

关键词:

摘要: Abstract We discuss here nano-scale size localized wave excitations, which are intrinsic traveling modes in two-dimensional anharmonic crystal lattice systems. In particular, using different initial conditions of coordinates and momenta we search for the longest lasting excitations triangular lattices. As most stable unaltered appear quasi-one-dimensional Toda-like solitons running rectilinear chains along main crystallographic axes such Furthermore, by following trace high energetic like “bubble chamber” methodology (or scanning tunneling microscopy) show how nonlinear waves appearing spontaneously heated systems can be detected followed space–time.

参考文章(70)
Luigi Fortuna, Alexander Fradkov, Mattia Frasca, From Physics to Control Through an Emergent View pfct. ,(2010) , 10.1142/7790
Alwyn Scott, Peter L. Christiansen, Davydov's soliton revisited : self-trapping of vibrational energy in protein Plenum Press. ,(1990)
Richard Courant, K. O. Friedrichs, Supersonic flow and shock waves ,(1948)
Alexander A. Nepomnyashchy, Manuel G. Velarde, Pierre Colinet, Interfacial Phenomena and Convection Chapman and Hall/CRC. ,(2001) , 10.1201/9781482296303
Akira Hasegawa, Masayuki Matsumoto, Optical solitons in fibers ,(1989)
Morikazu Toda, Theory of nonlinear lattices ,(1981)
Yaroslav V. Kartashov, Boris A. Malomed, Victor A. Vysloukh, Lluis Torner, Stable two-dimensional solitons in nonlinear lattices arXiv: Optics. ,(2009) , 10.1364/OL.34.000770
Imran A Butt, Jonathan A D Wattis, Discrete breathers in a two-dimensional hexagonal Fermi Pasta Ulam lattice Journal of Physics A. ,vol. 40, pp. 1239- 1264 ,(2007) , 10.1088/1751-8113/40/6/004
C. I. Christov, G. A. Maugin, M. G. Velarde, Well-posed Boussinesq paradigm with purely spatial higher-order derivatives Physical Review E. ,vol. 54, pp. 3621- 3638 ,(1996) , 10.1103/PHYSREVE.54.3621