Perturbations of the Plebanski metric in general relativity. I. Equations for gravitational perturbations

作者: Mainuddin Ahmed , Patrick Dolan

DOI: 10.1007/BF00773559

关键词:

摘要: The Plebanski metric is analyzed by means of the Newman-Penrose formalism. components Weyl and Ricci tensors spin coefficients are calculated. These results applied to obtain equations gravitational perturbations around metric.

参考文章(8)
Mainuddin Ahmed, Patrick Dolan, Perturbations of the Plebanski Metric in General Relativity. II. Perturbations of the Fermion Field General Relativity and Gravitation. ,vol. 18, pp. 961- 970 ,(1986) , 10.1007/BF00773560
Jerzy F Plebañski, A class of solutions of Einstein-Maxwell equations Annals of Physics. ,vol. 90, pp. 196- 255 ,(1975) , 10.1016/0003-4916(75)90145-1
William Kinnersley, TYPE D VACUUM METRICS. Journal of Mathematical Physics. ,vol. 10, pp. 1195- 1203 ,(1969) , 10.1063/1.1664958
Alan L. Dudley, J. D. Finley, Covariant Perturbed Wave Equations in Arbitrary Type $D$ Backgrounds Journal of Mathematical Physics. ,vol. 20, pp. 311- 328 ,(1979) , 10.1063/1.524064
J.F Plebanski, M Demianski, Rotating, charged, and uniformly accelerating mass in general relativity Annals of Physics. ,vol. 98, pp. 98- 127 ,(1976) , 10.1016/0003-4916(76)90240-2
S. K. Bose, Studies in the Kerr--Newman metric Journal of Mathematical Physics. ,vol. 16, pp. 772- 775 ,(1975) , 10.1063/1.522606
Mainuddin Ahmed, Patrick Dolan, Perturbations of the Plebanski metric in general relativity. I. Equations for gravitational perturbations General Relativity and Gravitation. ,vol. 18, pp. 953- 960 ,(1986) , 10.1007/BF00773559