Multiplicative equations related to the affine Weyl group E8

作者: J. Satsuma , R. Willox , B. Grammaticos , A. Ramani

DOI: 10.1063/1.4997166

关键词:

摘要: We derive integrable equations starting from autonomous mappings with a general form inspired by the multiplicative systems associated affine Weyl group E8(1). Five such are obtained, three of which turn out to be linearisable and remaining two in terms elliptic functions. In case mappings, we non-autonomous forms contain free function independent variable present linearisation each case. The deautonomised new discrete Painleve equations. show that these fact special much richer groups E7(1) E8(1), respectively.

参考文章(28)
Masatoshi Noumi, Satoshi Tsujimoto, Yasuhiko Yamada, Padé Interpolation for Elliptic Painlevé Equation Symmetries, Integrable Systems and Representations. pp. 463- 482 ,(2013) , 10.1007/978-1-4471-4863-0_18
Basile Grammaticos, Frank W. Nijhoff, Alfred Ramani, Discrete Painlevé Equations CBMS Regional Conference Series in#N# Mathematics. pp. 413- 516 ,(2019) , 10.1007/978-1-4612-1532-5_7
B. Grammaticos, A. Ramani, On a novel representation of discrete Painlevé equations Journal of Mathematical Physics. ,vol. 56, pp. 083507- ,(2015) , 10.1063/1.4927341
Ralph Willox, Takafumi Mase, Alfred Ramani, Basil Grammaticos, Deautonomisation by singularity confinement: an algebro-geometric justification arXiv: Exactly Solvable and Integrable Systems. ,(2014) , 10.1098/RSPA.2014.0956
Mikio Murata, Hidetaka Sakai, Jin Yoneda, Riccati solutions of discrete Painlevé equations with Weyl group symmetry of type E8(1) Journal of Mathematical Physics. ,vol. 44, pp. 1396- 1414 ,(2003) , 10.1063/1.1531216
Hidetaka Sakai, Rational surfaces associated with affine root systems and geometry of the Painlevé equations Communications in Mathematical Physics. ,vol. 220, pp. 165- 229 ,(2001) , 10.1007/S002200100446
Jarmo Hietarinta, Claude Viallet, SINGULARITY CONFINEMENT AND CHAOS IN DISCRETE SYSTEMS Physical Review Letters. ,vol. 81, pp. 325- 328 ,(1998) , 10.1103/PHYSREVLETT.81.325
Ryogo Hirota, Kinji Kimura, Hideyuki Yahagi, How to find the conserved quantities of nonlinear discrete equations Journal of Physics A. ,vol. 34, pp. 10377- 10386 ,(2001) , 10.1088/0305-4470/34/48/304
B. Grammaticos, A. Ramani, J. Satsuma, R. Willox, Discretising the Painlevé equations à la Hirota-Mickens Journal of Mathematical Physics. ,vol. 53, pp. 023506- 023506 ,(2012) , 10.1063/1.3682240
Mikio Murata, New Expressions for Discrete Painlevé Equations Funkcialaj Ekvacioj. ,vol. 47, pp. 291- 305 ,(2004) , 10.1619/FESI.47.291