Hopf bifurcation withSN-symmetry

作者: Ana Paula S Dias , Ana Rodrigues

DOI: 10.1088/0951-7715/22/3/007

关键词:

摘要: We study Hopf bifurcation with SN-symmetry for the standard absolutely irreducible action of SN obtained from by permutation N coordinates. Stewart (1996 Symmetry methods in collisionless many-body problems, J. Nonlinear Sci. 6 543–63) obtains a classification theorem C-axial subgroups × S1. use this to prove existence branches periodic solutions symmetry systems ordinary differential equations posed on direct sum two such SN-absolutely representations, as result occurring real parameter is varied. determine (generic) conditions coefficients fifth order S1-equivariant vector field that describe stability and criticality those solution branches. finish paper an application cases = 4 5.

参考文章(28)
ANA PAULA S. DIAS, RUI C. PAIVA, A NOTE ON HOPF BIFURCATION WITH DIHEDRAL GROUP SYMMETRY Glasgow Mathematical Journal. ,vol. 48, pp. 41- 51 ,(2006) , 10.1017/S0017089505002855
Michael J Field, Dynamics and Symmetry ,(2007)
Reiner Lauterbach, Pascal Chossat, Methods in Equivariant Bifurcations and Dynamical Systems ,(2000)
Martin Golubitsky, Ian Stewart, David G. Schaeffer, Singularities and groups in bifurcation theory Springer Science+Business Media. ,(1985) , 10.1007/978-1-4612-4574-2
G. Iooss, M. Rossi, Hopf Bifurcation in the Presence of Spherical Symmetry: Analytical Results SIAM Journal on Mathematical Analysis. ,vol. 20, pp. 511- 532 ,(1989) , 10.1137/0520036
I. Stewart, Symmetry Methods in Collisionless Many-Body Problems Journal of Nonlinear Science. ,vol. 6, pp. 543- 563 ,(1996) , 10.1007/BF02434056
P. Ashwin, J. W. Swift, The Dynamics of n Weakly Coupled Identical Oscillators Journal of Nonlinear Science. ,vol. 2, pp. 69- 108 ,(1992) , 10.1007/BF02429852