Rhythmic activity from transverse brainstem slice of neonatal rat is modulated by nitric oxide.

作者: O. Pierrefiche , F. Maniak , N. Larnicol

DOI: 10.1016/S0028-3908(02)00073-4

关键词:

摘要: We investigated the role of nitric oxide (NO) in modulation respiratory-like activity recorded from hypoglossal rootlets brainstem slices neonatal rats (P0-P8). Sodium nitroprusside (SNP), S-Nitroso-N-acetyl-D,L-penicillamine (SNAP) and diethylamine-NO (DEA-NO), three NO-donors, reversibly increased burst amplitude with inconsistent effects on frequency. Similar were also obtained endogenous substrate synthase (NOS), L-arginine, whereas inactive enantiomer D-arginine had no effect. The NO-trap agent methylene blue significantly depressed both frequency while hemoglobin only amplitude. Furthermore, addition agents attenuated excitatory response to SNP. Inhibiting NOS either N(omega)-Nitro-L-Arginine (L-NNA) or 7-Nitroindazole (7-NI), decreased Histochemical analysis NADPH-diaphorase activity, a marker for NOS, was performed not treated pharmacologically sections newborn rats, perfused situ. Comparison between vitro vivo conditions indicated that maintained slice preparations. Neurons ambiguus nuclei (dorsal division) exhibited granular staining, suggesting presence NADPHd-positive terminals. cytoplasmic staining identified regions connected nucleus (nucleus tractus solitarius, paramedian gigantocellular reticular nuclei). These neurons might be involved nitrergic control activity. Both pharmacological histochemical data suggest NO may reinforce output medullary respiratory network.

参考文章(40)
Muyiwa Gbadegesin, Stefano Vicini, Sandra J. Hewett, David A. Wink, Michael Espey, Ryszard M. Pluta, Carol A. Colton, Hypoxia modulates nitric oxide-induced regulation of NMDA receptor currents and neuronal cell death American Journal of Physiology-cell Physiology. ,vol. 277, ,(1999) , 10.1152/AJPCELL.1999.277.4.C673
David D. Kline, Tianen Yang, Daniel R. D. Premkumar, Agnes J. Thomas, Nanduri R. Prabhakar, Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase-3. Journal of Applied Physiology. ,vol. 88, pp. 1496- 1508 ,(2000) , 10.1152/JAPPL.2000.88.4.1496
A. Gelperin, J. Flores, F. Raccuia-Behling, I.R.C. Cooke, Nitric Oxide and Carbon Monoxide Modulate Oscillations of Olfactory Interneurons in a Terrestrial Mollusk Journal of Neurophysiology. ,vol. 83, pp. 116- 127 ,(2000) , 10.1152/JN.2000.83.1.116
R. A. Travagli, R. A. Gillis, Nitric oxide-mediated excitatory effect on neurons of dorsal motor nucleus of vagus. American Journal of Physiology-gastrointestinal and Liver Physiology. ,vol. 266, ,(1994) , 10.1152/AJPGI.1994.266.1.G154
L. Ling, D. R. Karius, R. R. Fiscus, D. F. Speck, Endogenous nitric oxide required for an integrative respiratory function in the cat brain. Journal of Neurophysiology. ,vol. 68, pp. 1910- 1912 ,(1992) , 10.1152/JN.1992.68.5.1910
Paul K. Nakane, 5 - Immunohistochemical Methods for Nitric Oxide Synthase Methods in Neurosciences. ,vol. 31, pp. 47- 61 ,(1996) , 10.1016/S1043-9471(96)80008-5
András Hermann, Vince Varga, Réka Janáky, Róbert Dohovics, Pirjo Saransaari, Simo S. Oja, Interference of S-nitrosoglutathione with the binding of ligands to ionotropic glutamate receptors in pig cerebral cortical synaptic membranes. Neurochemical Research. ,vol. 25, pp. 1119- 1124 ,(2000) , 10.1023/A:1007626230278
P. Michael Conn, Methods in neurosciences Methods in Neurosciences. ,vol. 10, ,(1991) , 10.1016/B978-0-12-185269-6.50005-9
P F Méry, C Pavoine, L Belhassen, F Pecker, R Fischmeister, Nitric oxide regulates cardiac Ca2+ current. Involvement of cGMP-inhibited and cGMP-stimulated phosphodiesterases through guanylyl cyclase activation. Journal of Biological Chemistry. ,vol. 268, pp. 26286- 26295 ,(1993) , 10.1016/S0021-9258(19)74313-0