A very high-order finite volume method for the time-dependent convection–diffusion problem with Butcher Tableau extension

作者: S. Clain , G.J. Machado

DOI: 10.1016/J.CAMWA.2014.09.001

关键词:

摘要: The time discretization of a very high-order nite volume method may give rise to new numerical diculties resulting into accuracy degradations. Indeed, for the simple onedimensional unstationary convection-diusi on equation instance, conicting situation between source term and boundary conditions arise when using standard Runge-Kutta method. We propose an alternative procedure by extending Butcher Tableau overcome this specic diculty achieve fourth-, sixth- or eighth-order schemes in space time. To end, is designed based polynomial reconstructions discretization, while we use Extended perform discretization. A large set tests has been carried out validate proposed

参考文章(15)
Thierry Gallouet, Raphaele Herbin, Robert Eymard, The nite volume method ,(2000)
J. A. Hernández, High‐order finite volume schemes for the advection–diffusion equation International Journal for Numerical Methods in Engineering. ,vol. 53, pp. 1211- 1234 ,(2002) , 10.1002/NME.335
Robert Eymard, Thierry Gallouët, Raphaèle Herbin, Finite Volume Methods Handbook of Numerical Analysis. ,vol. 7, pp. 713- 1018 ,(2000) , 10.1016/S1570-8659(00)07005-8
Carl Ollivier-Gooch, Michael Van Altena, A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation Journal of Computational Physics. ,vol. 181, pp. 729- 752 ,(2002) , 10.1006/JCPH.2002.7159
S. Clain, G.J. Machado, J.M. Nóbrega, R.M.S. Pereira, A sixth-order finite volume method for multidomain convection–diffusion problem with discontinuous coefficients Computer Methods in Applied Mechanics and Engineering. ,vol. 267, pp. 43- 64 ,(2013) , 10.1016/J.CMA.2013.08.003
Praveen Chandrashekar, Ashish Garg, Vertex-centroid finite volume scheme on tetrahedral grids for conservation laws Computers & Mathematics With Applications. ,vol. 65, pp. 58- 74 ,(2013) , 10.1016/J.CAMWA.2012.10.013
S. Clain, S. Diot, R. Loubère, A high-order finite volume method for systems of conservation laws-Multi-dimensional Optimal Order Detection (MOOD) Journal of Computational Physics. ,vol. 230, pp. 4028- 4050 ,(2011) , 10.1016/J.JCP.2011.02.026
Eleuterio F. Toro, Arturo Hidalgo, ADER finite volume schemes for nonlinear reaction--diffusion equations Applied Numerical Mathematics. ,vol. 59, pp. 73- 100 ,(2009) , 10.1016/J.APNUM.2007.12.001
Arturo Hidalgo, Michael Dumbser, ADER Schemes for Nonlinear Systems of Stiff Advection---Diffusion---Reaction Equations Journal of Scientific Computing. ,vol. 48, pp. 173- 189 ,(2011) , 10.1007/S10915-010-9426-6