A Posteriori Error Analysis of Two-Step Backward Differentiation Formula Finite Element Approximation for Parabolic Interface Problems

作者: Jhuma Sen Gupta , Rajen K Sinha , G Murali Mohan Reddy , Jinank Jain , None

DOI: 10.1007/S10915-016-0203-Z

关键词:

摘要: This paper studies a residual-based posteriori error estimates for linear parabolic interface problems in bounded convex polygonal domain $$\mathbb {R}^2$$R2. We use the standard finite element spaces space which are allowed to change time and two-step backward differentiation formula (BDF-2) approximation at equidistant step is used discretizations. The essential ingredients analysis continuous piecewise quadratic space---time BDF-2 reconstruction Scott---Zhang interpolation estimates. Optimal order an almost optimal derived $$L^{\infty }(L^{2})$$Lź(L2)-norm using only energy method. interfaces assumed be of arbitrary shape but smooth our purpose. Numerical experiments performed validate asymptotic behaviour estimators.

参考文章(24)
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
Arnold Reusken, Trung Hieu Nguyen, None, Nitsche’s Method for a Transport Problem in Two-phase Incompressible Flows Journal of Fourier Analysis and Applications. ,vol. 15, pp. 663- 683 ,(2009) , 10.1007/S00041-009-9092-Y
Zhiqiang Cai, Xiu Ye, Shun Zhang, Discontinuous Galerkin Finite Element Methods for Interface Problems: A Priori and A Posteriori Error Estimations SIAM Journal on Numerical Analysis. ,vol. 49, pp. 1761- 1787 ,(2011) , 10.1137/100805133
L. Ridgway Scott, Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions Mathematics of Computation. ,vol. 54, pp. 483- 493 ,(1990) , 10.1090/S0025-5718-1990-1011446-7
C. Bernardi, R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients Numerische Mathematik. ,vol. 85, pp. 579- 608 ,(2000) , 10.1007/PL00005393
Georgios Akrivis, Charalambos Makridakis, Ricardo H. Nochetto, A posteriori error estimates for the Crank–Nicolson method for parabolic equations Mathematics of Computation. ,vol. 75, pp. 511- 531 ,(2005) , 10.1090/S0025-5718-05-01800-4
W. McLean, V. Thomée, Numerical solution of an evolution equation with a positive-type memory term The Journal of The Australian Mathematical Society. Series B. Applied Mathematics. ,vol. 35, pp. 23- 70 ,(1993) , 10.1017/S0334270000007268