Bioreactors for Tissue Engineering

作者: Scott Maxson , David Orr , Karen J. L. Burg

DOI: 10.1007/978-3-642-02824-3_10

关键词:

摘要: A variety of bioreactor designs exist today as a result previous efforts by engineers and researchers to construct optimal systems for particular tissue engineering application. The primary purpose any is provide sterile cell culture environment that can be tightly controlled. simple petri dish complex an automatically controlled, cyclically loaded three-dimensional biochamber. number laboratories have designed custom bioreactors apply mechanical stimuli cells grown in monolayer or conditions. Varying levels complexity exist; typically, the incorporate at least one five common loading regimens, including perfusion fluid flow, hydrostatic pressure, uniaxial displacement, biaxial microgravity (Fig. 10.1) [10]. Bioreactors used vitro more similar vivo condition; dynamic are necessary appropriate, physiologically relevant [1].

参考文章(64)
Takafumi Yoshikawa, Janice R. Gladstone, Sean A.F. Peel, John E. Davies, Biochemical analysis of the response in rat bone marrow cell cultures to mechanical stimulation Bio-medical Materials and Engineering. ,vol. 7, pp. 369- 377 ,(1997)
K.J.L. Burg, T. Boland, Minimally invasive tissue engineering composites and cell printing IEEE Engineering in Medicine and Biology Magazine. ,vol. 22, pp. 84- 91 ,(2003) , 10.1109/MEMB.2003.1256277
Richard D. Weisel, Donald A. G. Mickle, Payam Akhyari, Paul W. M. Fedak, Tsu-Yee Joseph Lee, Subodh Verma, Ren-Ke Li, Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation. ,vol. 106, ,(2002) , 10.1161/01.CIR.0000032893.55215.FC
Gerard A. Ateshian, Robert L. Mauck, Seonghun Park, Eric G. Lima, Kenneth W. Ng, Shelley H. Han, Clark T. Hung, Functional tissue engineering of chondral and osteochondral constructs Biorheology. ,vol. 41, pp. 577- 590 ,(2004)
Eric A. Nauman, Kurtis J. Risic, Tony M. Keaveny, Robert L. Satcher, Quantitative assessment of steady and pulsatile flow fields in a parallel plate flow chamber. Annals of Biomedical Engineering. ,vol. 27, pp. 194- 199 ,(1999) , 10.1114/1.173
Thomas D Brown, Techniques for mechanical stimulation of cells in vitro: a review Journal of Biomechanics. ,vol. 33, pp. 3- 14 ,(2000) , 10.1016/S0021-9290(99)00177-3
K. J. L. Burg, W. D. Holder, C. R. Culberson, R. J. Beiler, K. G. Greene, A. B. Loebsack, W. D. Roland, P. Eiselt, D. J. Mooney, C. R. Halberstadt, Comparative study of seeding methods for three-dimensional polymeric scaffolds. Journal of Biomedical Materials Research. ,vol. 51, pp. 642- 649 ,(2000) , 10.1002/1097-4636(20000915)51:4<642::AID-JBM12>3.0.CO;2-L
Alison Abbott, Biology's new dimension Nature. ,vol. 424, pp. 870- 872 ,(2003) , 10.1038/424870A
Anthony Ratcliffe, Laura E Niklason, None, Bioreactors and Bioprocessing for Tissue Engineering Annals of the New York Academy of Sciences. ,vol. 961, pp. 210- 215 ,(2002) , 10.1111/J.1749-6632.2002.TB03087.X
Karen M. Francis, Kim C. O’Connor, Glenn F. Spaulding, Cultivation of fall armyworm ovary cells in simulated microgravity In Vitro Cellular & Developmental Biology – Animal. ,vol. 33, pp. 332- 336 ,(1997) , 10.1007/S11626-997-0002-9