Finite nonlocal gauge field theory.

作者: J. W. Moffat

DOI: 10.1103/PHYSREVD.41.1177

关键词:

摘要: A canonical quantization formalism for gauge fields is presented, based on massless nonlocal vector and second-rank tensor field Lagrangians. The Lagrangians describing quantum electrodynamics, electroweak theory, gravitation within the context of are shown to lead finite, gauge-invariant, unitary theories all orders in perturbation theory. generalized theory does not contain any hierarchy problems, associated with Higgs-meson it describes a nontrivial

参考文章(25)
J.W. Moffat, Infinite Component Fields as a Basis for a Finite Quantum Field Theory Physics Letters B. ,vol. 206, pp. 499- 502 ,(1988) , 10.1016/0370-2693(88)91617-6
J. W. Moffat, Finite quantum field theory based on superspin fields Physical Review D. ,vol. 39, pp. 3654- 3671 ,(1989) , 10.1103/PHYSREVD.39.3654
M. Lindner, Implications of Triviality for the Standard Model European Physical Journal A. ,vol. 31, pp. 295- 300 ,(1986) , 10.1007/BF01479540
B. Grza̧dkowski, M. Lindner, Stability of triviality mass bounds in the standard model Physics Letters B. ,vol. 178, pp. 81- 83 ,(1986) , 10.1016/0370-2693(86)90473-9
Arthur Jaffe, Divergence of perturbation theory for bosons Communications in Mathematical Physics. ,vol. 1, pp. 127- 149 ,(1965) , 10.1007/BF01646496
David J. Gross, Vipul Periwal, String perturbation theory diverges. Physical Review Letters. ,vol. 60, pp. 2105- 2108 ,(1988) , 10.1103/PHYSREVLETT.60.2105
Sheldon L Glashow, None, Partial Symmetries of Weak Interactions Nuclear Physics. ,vol. 22, pp. 579- 588 ,(1961) , 10.1016/0029-5582(61)90469-2
Steven Weinberg, A Model of Leptons Physical Review Letters. ,vol. 19, pp. 1264- 1266 ,(1967) , 10.1103/PHYSREVLETT.19.1264
J. W. Moffat, New theory of gravitation Physical Review D. ,vol. 19, pp. 3554- 3558 ,(1979) , 10.1103/PHYSREVD.19.3554