Mutant LKB1 Confers Enhanced Radiosensitization in Combination with Trametinib in KRAS-Mutant Non–Small Cell Lung Cancer

作者: Yifan Wang , Nan Li , Wen Jiang , Weiye Deng , Rui Ye

DOI: 10.1158/1078-0432.CCR-18-1489

关键词:

摘要: Purpose: The MEK inhibitor trametinib radiosensitizes KRAS-mutant non–small cell lung cancer (NSCLC) and is being tested clinically with chemoradiation. However, variability in response to suggests that additional pathways are involved. mechanism of resistance radiosensitization still unknown. Experimental Design: We used a panel NSCLC cells the effects by clonogenic survival assay. Then, we investigated mechanisms underlying combination therapy through several knockout overexpression systems. Finally, validated our findings syngeneic mouse models treatment setting mimicked standard care clinic. Results: Radiosensitization was effective only KRAS-LKB1–mutated wild-type (WT) p53, found restoring LKB1 expression those blocked sensitization. Trametinib radiotherapy both induced senescence p53-dependent manner, but WT cells, also activated AMPK-autophagy pathway rescue damaged from senescence. LKB1-knockout or autophagy inhibition potentiated radiosensitization. In animal Kras-mutant tumors, Lkb1-knockout tumors were resistant chemoradiation given separately, greatly controlled tumor growth prolonged survival. Conclusions: mutation conferred enhanced trametinib. could activate AMPK induce radiation. KRAS-LKB1 potentially be biomarker select patients for therapy. Clin Cancer Res; 24(22); 5744–56. ©2018 AACR.

参考文章(51)
Akseli Hemminki, David Markie, Ian Tomlinson, Egle Avizienyte, Stina Roth, Anu Loukola, Graham Bignell, William Warren, Maria Aminoff, Pia Höglund, Heikki Järvinen, Paula Kristo, Katarina Pelin, Maaret Ridanpää, Reijo Salovaara, Tumi Toro, Walter Bodmer, Sylviane Olschwang, Anne S Olsen, Michael R Stratton, Albert De La Chapelle, Lauri A Aaltonen, None, A serine/threonine kinase gene defective in Peutz–Jeghers syndrome Nature. ,vol. 391, pp. 184- 187 ,(1998) , 10.1038/34432
C. Kang, Q. Xu, T. D. Martin, M. Z. Li, M. Demaria, L. Aron, T. Lu, B. A. Yankner, J. Campisi, S. J. Elledge, The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4 Science. ,vol. 349, ,(2015) , 10.1126/SCIENCE.AAA5612
Kathryn T. Bieging, Stephano Spano Mello, Laura D. Attardi, Unravelling mechanisms of p53-mediated tumour suppression Nature Reviews Cancer. ,vol. 14, pp. 359- 370 ,(2014) , 10.1038/NRC3711
Joungmok Kim, Mondira Kundu, Benoit Viollet, Kun-Liang Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1 Nature Cell Biology. ,vol. 13, pp. 132- 141 ,(2011) , 10.1038/NCB2152
Roderick A. M. Williams, Terry K. Smith, Benjamin Cull, Jeremy C. Mottram, Graham H. Coombs, ATG5 Is Essential for ATG8-Dependent Autophagy and Mitochondrial Homeostasis in Leishmania major PLOS Pathogens. ,vol. 8, ,(2012) , 10.1371/JOURNAL.PPAT.1002695
Yasuo Ido, Albert Duranton, Fan Lan, Jose M. Cacicedo, Tai C. Chen, Lionel Breton, Neil B. Ruderman, Acute Activation of AMP-Activated Protein Kinase Prevents H2O2-Induced Premature Senescence in Primary Human Keratinocytes PLoS ONE. ,vol. 7, pp. e35092- ,(2012) , 10.1371/JOURNAL.PONE.0035092
Malte Kriegs, Ulla Kasten-Pisula, Thorsten Rieckmann, Katharina Holst, Jarob Saker, Jochen Dahm-Daphi, Ekkehard Dikomey, The epidermal growth factor receptor modulates DNA double-strand break repair by regulating non-homologous end-joining. DNA Repair. ,vol. 9, pp. 889- 897 ,(2010) , 10.1016/J.DNAREP.2010.05.005
Yu Wang, Yan Liang, Paul M. Vanhoutte, SIRT1 and AMPK in regulating mammalian senescence: A critical review and a working model FEBS Letters. ,vol. 585, pp. 986- 994 ,(2011) , 10.1016/J.FEBSLET.2010.11.047
Yoko Ogawara, Shohei Kishishita, Toshiyuki Obata, Yuko Isazawa, Toshiaki Suzuki, Keiji Tanaka, Norihisa Masuyama, Yukiko Gotoh, Akt Enhances Mdm2-mediated Ubiquitination and Degradation of p53 * Journal of Biological Chemistry. ,vol. 277, pp. 21843- 21850 ,(2002) , 10.1074/JBC.M109745200
Neville E Sanjana, Ophir Shalem, Feng Zhang, Improved vectors and genome-wide libraries for CRISPR screening. Nature Methods. ,vol. 11, pp. 783- 784 ,(2014) , 10.1038/NMETH.3047