Chaotic synchronization of two complex nonlinear oscillators

作者: Gamal M. Mahmoud , Emad E. Mahmoud , Ahmed A. Farghaly , Shaban A. Aly

DOI: 10.1016/J.CHAOS.2009.04.027

关键词:

摘要: Abstract Synchronization is an important phenomenon commonly observed in nature. It also often artificially induced because it desirable for a variety of applications physics, applied sciences and engineering. In recent paper [Mahmoud GM, Mohamed AA, Aly SA. Strange attractors chaos control periodically forced complex Duffing’s oscillators. Physica A 2001;292:193–206], system oscillators was introduced shown to display chaotic behavior possess strange attractors. Such appear many problems physics engineering, as, example, nonlinear optics, deep-water wave theory, plasma bimolecular dynamics. Their connection solutions the Schrodinger equation has been pointed out. this paper, we study remarkable synchronization on these oscillator systems, using active global techniques. We derive analytical expressions functions show that dynamics error evolution globally stable, by constructing appropriate Lyapunov functions. This means that, relatively large set initial conditions, differences between drive response systems vanish exponentially achieved. Numerical results are obtained test validity illustrate efficiency techniques inducing our

参考文章(19)
L. Kocarev, U. Parlitz, General approach for chaotic synchronization with applications to communication. Physical Review Letters. ,vol. 74, pp. 5028- 5031 ,(1995) , 10.1103/PHYSREVLETT.74.5028
Yanwu Wang, Zhi-Hong Guan, Hua O. Wang, Feedback and adaptive control for the synchronization of Chen system via a single variable Physics Letters A. ,vol. 312, pp. 34- 40 ,(2003) , 10.1016/S0375-9601(03)00573-5
Nikolai F. Rulkov, Lev S. Tsimring, Synchronization methods for communication with chaos over band-limited channels International Journal of Circuit Theory and Applications. ,vol. 27, pp. 555- 567 ,(1999) , 10.1002/(SICI)1097-007X(199911/12)27:6<555::AID-CTA82>3.0.CO;2-X
Ju H. Park, On synchronization of unified chaotic systems via nonlinear Control Chaos Solitons & Fractals. ,vol. 25, pp. 699- 704 ,(2005) , 10.1016/J.CHAOS.2004.11.031
Guo-Ping Jiang, Wallace Kit-Sang Tang, Guanrong Chen, A simple global synchronization criterion for coupled chaotic systems Chaos Solitons & Fractals. ,vol. 15, pp. 925- 935 ,(2003) , 10.1016/S0960-0779(02)00214-X
Ju H. Park, Chaos synchronization of a chaotic system via nonlinear control Chaos Solitons & Fractals. ,vol. 25, pp. 579- 584 ,(2005) , 10.1016/J.CHAOS.2004.11.038
A. Jayaram, M. Tadi, Synchronization of chaotic systems based on SDRE method Chaos, Solitons & Fractals. ,vol. 28, pp. 707- 715 ,(2006) , 10.1016/J.CHAOS.2005.04.117
U. Parlitz, L. Kocarev, T. Stojanovski, H. Preckel, Encoding messages using chaotic synchronization. Physical Review E. ,vol. 53, pp. 4351- 4361 ,(1996) , 10.1103/PHYSREVE.53.4351
Er-Wei Bai, Karl E Lonngren, Sequential synchronization of two Lorenz systems using active control Chaos Solitons & Fractals. ,vol. 11, pp. 1041- 1044 ,(2000) , 10.1016/S0960-0779(98)00328-2
J. García-Ojalvo, Rajarshi Roy, Spatiotemporal Communication with Synchronized Optical Chaos Physical Review Letters. ,vol. 86, pp. 5204- 5207 ,(2001) , 10.1103/PHYSREVLETT.86.5204