A hyperchaotic system without equilibrium

作者: Zenghui Wang , Shijian Cang , Elisha Oketch Ochola , Yanxia Sun

DOI: 10.1007/S11071-011-0284-Z

关键词:

摘要: … As can be seen from Fig. 5, the time sequences of the system variables are neither sink nor … As can be seen from Fig. 4, the frequency spectra of states x and z, corresponding to Fig. 4(a…

参考文章(14)
Xing Huo Yu, G. Chen, Chaos control : theory and applications Springer. ,(2003)
Hubertus F. von Bremen, Firdaus E. Udwadia, Wlodek Proskurowski, An efficient QR based method for the computation of Lyapunov exponents Physica D: Nonlinear Phenomena. ,vol. 101, pp. 1- 16 ,(1997) , 10.1016/S0167-2789(96)00216-3
Zengqiang Chen, Yong Yang, Zhuzhi Yuan, A single three-wing or four-wing chaotic attractor generated from a three-dimensional smooth quadratic autonomous system Chaos, Solitons & Fractals. ,vol. 38, pp. 1187- 1196 ,(2008) , 10.1016/J.CHAOS.2007.01.058
J. C. Sprott, Some simple chaotic flows. Physical Review E. ,vol. 50, ,(1994) , 10.1103/PHYSREVE.50.R647
Judy Kennedy, Sahin Koçak, James A. Yorke, A Chaos Lemma American Mathematical Monthly. ,vol. 108, pp. 411- 423 ,(2001) , 10.1080/00029890.2001.11919767
Tien-Yien Li, James A. Yorke, Period Three Implies Chaos The Theory of Chaotic Attractors. ,vol. 82, pp. 77- 84 ,(2004) , 10.1007/978-0-387-21830-4_6
Zenghui Wang, Guoyuan Qi, Yanxia Sun, Barend Jacobus van Wyk, Michaël Antonie van Wyk, A new type of four-wing chaotic attractors in 3-D quadratic autonomous systems Nonlinear Dynamics. ,vol. 60, pp. 443- 457 ,(2010) , 10.1007/S11071-009-9607-8
Gamal M. Mahmoud, Emad E. Mahmoud, Ahmed A. Farghaly, Shaban A. Aly, Chaotic synchronization of two complex nonlinear oscillators Chaos, Solitons & Fractals. ,vol. 42, pp. 2858- 2864 ,(2009) , 10.1016/J.CHAOS.2009.04.027
Tianshou Zhou, Guanrong Chen, Qigui Yang, Constructing a new chaotic system based on the S̆ilnikov criterion Chaos Solitons & Fractals. ,vol. 19, pp. 985- 993 ,(2004) , 10.1016/S0960-0779(03)00251-0