Hyperchaos Numerical Simulation and Control in a 4D Hyperchaotic System

作者: Junhai Ma , Yujing Yang

DOI: 10.1155/2013/980578

关键词:

摘要: A hyperchaotic system is introduced, and the complex dynamical behaviors of such are investigated by means numerical simulations. The bifurcation diagrams, Lyapunov exponents, attractors, power spectrums, time charts mapped out through theory analysis dynamic chaotic hyper-chaotic attractors exist alter over a wide range parameters according to variety exponents diagrams. Furthermore, linear feedback controllers designed for stabilizing hyperchaos unstable equilibrium points; thus, we achieve goal second control which more useful in application.

参考文章(24)
James L. Kaplan, James A. Yorke, Chaotic behavior of multidimensional difference equations Springer, Berlin, Heidelberg. pp. 204- 227 ,(1979) , 10.1007/BFB0064319
Xingyuan Wang, Bing Xu, Chao Luo, None, An asynchronous communication system based on the hyperchaotic system of 6th-order cellular neural network Optics Communications. ,vol. 285, pp. 5401- 5405 ,(2012) , 10.1016/J.OPTCOM.2012.07.032
Wenjuan Wu, Zengqiang Chen, Zhuzhi Yuan, The evolution of a novel four-dimensional autonomous system: Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos Chaos, Solitons & Fractals. ,vol. 39, pp. 2340- 2356 ,(2009) , 10.1016/J.CHAOS.2007.07.016
Chi-Ching Yang, One input control of exponential synchronization for a four-dimensional chaotic system Applied Mathematics and Computation. ,vol. 219, pp. 5152- 5161 ,(2013) , 10.1016/J.AMC.2012.11.003
Shih-Yu Li, Sheng-Chieh Huang, Cheng-Hsiung Yang, Zheng-Ming Ge, Generating tri-chaos attractors with three positive Lyapunov exponents in new four order system via linear coupling Nonlinear Dynamics. ,vol. 69, pp. 805- 816 ,(2012) , 10.1007/S11071-011-0306-X
Junhai Ma, Qin Gao, Stability and Hopf bifurcations in a business cycle model with delay Applied Mathematics and Computation. ,vol. 215, pp. 829- 834 ,(2009) , 10.1016/J.AMC.2009.06.008
K.P. Harikrishnan, R. Misra, G. Ambika, Revisiting the box counting algorithm for the correlation dimension analysis of hyperchaotic time series Communications in Nonlinear Science and Numerical Simulation. ,vol. 17, pp. 263- 276 ,(2012) , 10.1016/J.CNSNS.2011.05.006
Zenghui Wang, Shijian Cang, Elisha Oketch Ochola, Yanxia Sun, A hyperchaotic system without equilibrium Nonlinear Dynamics. ,vol. 69, pp. 531- 537 ,(2012) , 10.1007/S11071-011-0284-Z
Paulo C. Rech, Chaos and hyperchaos in a Hopfield neural network Neurocomputing. ,vol. 74, pp. 3361- 3364 ,(2011) , 10.1016/J.NEUCOM.2011.05.016
Simin Yu, Guanrong Chen, Anti-control of continuous-time dynamical systems Communications in Nonlinear Science and Numerical Simulation. ,vol. 17, pp. 2617- 2627 ,(2012) , 10.1016/J.CNSNS.2011.10.001