A LOW-COST MARKERLESS TRACKING SYSTEM FOR TRAJECTORYINTERPRETATION

作者: A. Laggis , N. Doulamis , E. Protopapadakis , A. Georgopoulos

DOI: 10.5194/ISPRS-ARCHIVES-XLII-2-W3-413-2017

关键词:

摘要: Abstract. The tracking abilities of 1st generation Kinect sensors have been tested over common trajectories folk dances. Trajectories related errors, including offset, curve shape, noisy points are investigated and mitigated using well-known signal processing filters. Low cost depth trackers can contribute towards the remote tutoring dances, by providing adequate data to instructors explicit details trainees which segments their dance need more work.

参考文章(7)
Lars Wilke, Tom Calvert, Rhonda Ryman, Ilene Fox, From dance notation to human animation: The LabanDancer project Computer Animation and Virtual Worlds. ,vol. 16, pp. 201- 211 ,(2005) , 10.1002/CAV.90
Worawat Choensawat, Minako Nakamura, Kozaburo Hachimura, GenLaban: A tool for generating Labanotation from motion capture data Multimedia Tools and Applications. ,vol. 74, pp. 10823- 10846 ,(2015) , 10.1007/S11042-014-2209-6
Zhengyou Zhang, Microsoft Kinect Sensor and Its Effect IEEE MultiMedia. ,vol. 19, pp. 4- 10 ,(2012) , 10.1109/MMUL.2012.24
Hao Chen, Zhenjiang Miao, Feiyue Zhu, Gang Zhang, Song Li, Generating Labanotation from Motion Capture Data international conference on culture and computing. pp. 222- 223 ,(2013) , 10.1109/CULTURECOMPUTING.2013.75
Sophocles J. Orfanidis, Introduction to signal processing ,(1995)
Lin Yang, Longyu Zhang, Haiwei Dong, Abdulhameed Alelaiwi, Abdulmotaleb El Saddik, Evaluating and Improving the Depth Accuracy of Kinect for Windows v2 IEEE Sensors Journal. ,vol. 15, pp. 4275- 4285 ,(2015) , 10.1109/JSEN.2015.2416651
Klara Nahrstedt, Katherine Mezur, Ruzena Bajcsy, Lisa Wymore, Renata M. Sheppard, Computational model of human creativity in dance choreography national conference on artificial intelligence. pp. 53- 60 ,(2008)