Some Mathematical Properties of Oscillator Phase Operators

作者: E. C. Lerner , H. W. Huang , G. E. Walters

DOI: 10.1063/1.1665310

关键词:

摘要: A general definition of ``cosine'' and ``sine'' operators, C S, for harmonic oscillator phase is proposed its consequences examined. An important feature the spectral analysis ``chain sequence'' condition which ensures that S have unit norm. The (nonunitary) operator U = + iS shown to be an annihilation‐type whose properties bear a remarkable analogy those standard annihilation operator, although spectrum fills circle rather than entire complex plane. Statistical eigenstates are discussed briefly.

参考文章(11)
P. CARRUTHERS, MICHAEL MARTIN NIETO, Phase and Angle Variables in Quantum Mechanics Reviews of Modern Physics. ,vol. 40, pp. 411- 440 ,(1968) , 10.1103/REVMODPHYS.40.411
Roman Jackiw, Minimum Uncertainty Product, Number‐Phase Uncertainty Product, and Coherent States Journal of Mathematical Physics. ,vol. 9, pp. 339- 346 ,(1968) , 10.1063/1.1664585
J. ZAK, Angle and Phase Coordinates in Quantum Mechanics Physical Review. ,vol. 187, pp. 1803- 1810 ,(1969) , 10.1103/PHYSREV.187.1803
Ernest Ikenberry, Introduction to Hilbert Space ,(1961)
E. C. Lerner, Harmonic-oscillator phase operators Il Nuovo Cimento B. ,vol. 56, pp. 183- 186 ,(1968) , 10.1007/BF02711966
Kevin E. Cahill, Coherent-State Representations for the Photon Density Operator Physical Review. ,vol. 138, pp. B1566- B1576 ,(1965) , 10.1103/PHYSREV.138.B1566
P. Carruthers, M. M. Nieto, COHERENT STATES AND THE NUMBER-PHASE UNCERTAINTY RELATION, Physical Review Letters. ,vol. 14, pp. 387- 389 ,(1965) , 10.1103/PHYSREVLETT.14.387
Roy J. Glauber, Coherent and Incoherent States of the Radiation Field Physical Review. ,vol. 131, pp. 2766- 2788 ,(1963) , 10.1103/PHYSREV.131.2766
Leonard Susskind, Jonathan Glogower, Quantum mechanical phase and time operator Physics. ,vol. 1, pp. 49- 61 ,(1964) , 10.1103/PHYSICSPHYSIQUEFIZIKA.1.49