Immobilizing a polytope

作者: Jurek Czyzowicz , Ivan Stojmenovic , Jorge Urrutia

DOI: 10.1007/BFB0028264

关键词:

摘要: We say that a polygon P is immobilized by set of points I on its boundary if any rigid motion in the plane causes at least one point to penetrate interior P. Three immobilization are always sufficient for with vertices general positions, but four necessary some polygons parallel edges. An O(n log n) algorithm finds 3 immobilize given positions suggested. The becomes linear convex polygons. Some results generalized d-dimensional polytopes, where 2d and sometimes immobilize. When polytope has position d+1

参考文章(10)
Joseph O'Rourke, Computational geometry column 9 Sigact News. ,vol. 21, pp. 18- ,(1990) , 10.1145/379139.379167
B S Baker, S Fortune, E Grosse, Stable prehension with three fingers Proceedings of the seventeenth annual ACM symposium on Theory of computing - STOC '85. pp. 114- 120 ,(1985) , 10.1145/22145.22158
Chee K. Yap, AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments Discrete & Computational Geometry. ,vol. 2, pp. 365- 393 ,(1987) , 10.1007/BF02187890
Bhubaneswar Mishra, Micha Sharir, Micha Sharir, Jacob T. Schwartz, On the existence and synthesis of multifinger positive grips ,(2011)
Herbert Edelsbrunner, Algorithms in Combinatorial Geometry ,(1987)
Xanthippi Markenscoff, Christos H. Papadimitriou, Optimum grip of a polygon The International Journal of Robotics Research. ,vol. 8, pp. 17- 29 ,(1987) , 10.1177/027836498900800202
Xanthippi Markenscoff, Luqun Ni, Christos H. Papadimitriou, The Geometry of grasping The International Journal of Robotics Research. ,vol. 9, pp. 61- 74 ,(1990) , 10.1177/027836499000900102
David G. Kirkpatrick, Efficient computation of continuous skeletons 20th Annual Symposium on Foundations of Computer Science (sfcs 1979). pp. 18- 27 ,(1979) , 10.1109/SFCS.1979.15
Alok Aggarwal, Leonidas J. Guibas, James Saxe, Peter W. Shor, A linear-time algorithm for computing the voronoi diagram of a convex polygon Discrete & Computational Geometry. ,vol. 4, pp. 591- 604 ,(1989) , 10.1007/BF02187749
S Fortune, A sweepline algorithm for Voronoi diagrams Proceedings of the second annual symposium on Computational geometry - SCG '86. pp. 313- 322 ,(1986) , 10.1145/10515.10549