Riemannian geometry of bicovariant group lattices

作者: Folkert Müller-Hoissen , Aristophanes Dimakis

DOI: 10.1063/1.1594820

关键词:

摘要: Group lattices (Cayley digraphs) of a discrete group are in natural correspondence with differential calculi on the group. On such calculus geometric structures can be introduced following general recipes noncommutative geometry. Despite noncommutativity between functions and (generalized) forms, for subclass “bicovariant” considered this work it is possible to understand central objects like metric, torsion curvature as “tensors” (left) covariance properties. This ensures that tensor components (with respect basis space 1-forms) transform familiar homogeneous way under change basis. There compatibility condition metric linear connection. The resulting (pseudo-) Riemannian geometry explored work. It demonstrated indeed able properly describe properties geometries lengths angles. A simple g...

参考文章(37)
M. J. Dinneen, Algebraic Constructions of Efficient Broadcast Networks Applicable Algebra in Engineering, Communication and Computing. pp. 152- 158 ,(1991) , 10.1007/3-540-54522-0_104
L. Castellani, A. P. Isaev, P. Aschieri, Yang-Mills and Born-Infeld actions on finite group spaces arXiv: High Energy Physics - Theory. ,(2002)
Gionti, Gabriele, S.J., Discrete Approaches Towards the Definition of a Quantum Theory of Gravity arXiv: General Relativity and Quantum Cosmology. ,(1998)
Lee Smolin, Mark A. Miller, Ola Bostrom, A New discretization of classical and quantum general relativity arXiv: General Relativity and Quantum Cosmology. ,(1994)
S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups) Communications in Mathematical Physics. ,vol. 122, pp. 125- 170 ,(1989) , 10.1007/BF01221411
R M Williams, P A Tuckey, Regge calculus: a brief review and bibliography Classical and Quantum Gravity. ,vol. 9, pp. 1409- 1422 ,(1992) , 10.1088/0264-9381/9/5/021
Cayetano Di Bartolo, Rodolfo Gambini, Jorge Pullin, Canonical quantization of constrained theories on discrete spacetime lattices Classical and Quantum Gravity. ,vol. 19, pp. 5275- 5296 ,(2002) , 10.1088/0264-9381/19/21/301
M. Caselle, A. D'Adda, L. Magnea, Lattice gravity and supergravity as spontaneously broken gauge theories of the (super) poincaré group Physics Letters B. ,vol. 192, pp. 406- 410 ,(1987) , 10.1016/0370-2693(87)90128-6
Folkert Müller-Hoissen, Aristophanes Dimakis, Differential geometry of group lattices Journal of Mathematical Physics. ,vol. 44, pp. 1781- 1821 ,(2003) , 10.1063/1.1540713
G. Feinberg, R. Friedberg, T.D. Lee, H.C. Ren, Lattice gravity near the continuum limit Nuclear Physics. ,vol. 245, pp. 343- 368 ,(1984) , 10.1016/0550-3213(84)90436-X