A New discretization of classical and quantum general relativity

作者: Lee Smolin , Mark A. Miller , Ola Bostrom

DOI:

关键词:

摘要: We propose a new discrete approximation to the Einstein equations, based on Capovilla-Dell-Jacobson form of action for Ashtekar variables. This formulation is analogous Regge calculus in that curvature has support sets measure zero. Both Lagrangian and Hamiltonian are proposed we report partial results about constraint algebra formulation. find versions diffeomorphism constraints do not commute with each other or constraint.

参考文章(13)
Herbert W. Hamber, Simplicial Quantum Gravity From Two to Four Dimensions Probabilistic Methods in Quantum Field Theory and Quantum Gravity. ,vol. 224, pp. 243- 257 ,(1990) , 10.1007/978-1-4615-3784-7_17
Abhay Ashtekar, Carlo Rovelli, Lee Smolin, Weaving a classical metric with quantum threads Physical Review Letters. ,vol. 69, pp. 237- 240 ,(1992) , 10.1103/PHYSREVLETT.69.237
M Roček, Ruth M Williams, None, Quantum Regge calculus Physics Letters B. ,vol. 104, pp. 31- 37 ,(1981) , 10.1016/0370-2693(81)90848-0
M. Roček, R. M. Williams, The Quantization of Regge Calculus European Physical Journal C. ,vol. 21, pp. 371- 381 ,(1984) , 10.1007/BF01581603
Carlo Rovelli, Lee Smolin, Knot theory and quantum gravity. Physical Review Letters. ,vol. 61, pp. 1155- 1158 ,(1988) , 10.1103/PHYSREVLETT.61.1155
G T Horowitz, Topology change in classical and quantum gravity Classical and Quantum Gravity. ,vol. 8, pp. 587- 601 ,(1991) , 10.1088/0264-9381/8/4/007
T. Regge, General relativity without coordinates Il Nuovo Cimento. ,vol. 19, pp. 558- 571 ,(1961) , 10.1007/BF02733251
Ted Jacobson, Lee Smolin, Nonperturbative quantum geometries Nuclear Physics B. ,vol. 299, pp. 295- 345 ,(1988) , 10.1016/0550-3213(88)90286-6
H Waelbroeck, 2+1 lattice gravity Classical and Quantum Gravity. ,vol. 7, pp. 751- 769 ,(1990) , 10.1088/0264-9381/7/5/006