ON THE DIFFEOMORPHISM-COMMUTATORS OF LATTICE QUANTUM GRAVITY

作者: Renate Loll

DOI: 10.1088/0264-9381/15/4/008

关键词:

摘要: We show that the algebra of discretized spatial diffeomorphism constraints in Hamiltonian lattice quantum gravity closes without anomalies limit small spacing. The result holds for arbitrary factor-ordering and a variety different discretizations continuum constraints, thus generalizes an earlier calculation by Renteln.

参考文章(25)
Lee Smolin, Mark A. Miller, Ola Bostrom, A New discretization of classical and quantum general relativity arXiv: General Relativity and Quantum Cosmology. ,(1994)
Lee Smolin, The classical limit and the form of the hamiltonian constraint in nonperturbative quantum gravity arXiv: General Relativity and Quantum Cosmology. ,(1996)
Hugo Fort, Rodolfo Gambini, Jorge Pullin, Lattice knot theory and quantum gravity in the loop representation Physical Review D. ,vol. 56, pp. 2127- 2143 ,(1997) , 10.1103/PHYSREVD.56.2127
Ya. M. Blanter, M. Büttiker, Shot-noise current-current correlations in multiterminal diffusive conductors Physical Review B. ,vol. 56, pp. 2127- 2136 ,(1997) , 10.1103/PHYSREVB.56.2127
P Renteln, Some results of SU(2) spinorial lattice gravity Classical and Quantum Gravity. ,vol. 7, pp. 493- 502 ,(1990) , 10.1088/0264-9381/7/3/023
Carlo Rovelli, Lee Smolin, Loop space representation of quantum general relativity Nuclear Physics. ,vol. 331, pp. 80- 152 ,(1990) , 10.1016/0550-3213(90)90019-A
Donald Marolf, Jerzy Lewandowski, Loop constraints: A habitat and their algebra International Journal of Modern Physics D. ,vol. 7, pp. 299- 330 ,(1998) , 10.1142/S0218271898000231
Takashi Hotta, Satoshi Fujimoto, Perturbation study on the spin and charge susceptibilities of the two-dimensional Hubbard model. Physical Review B. ,vol. 54, pp. 5381- 5388 ,(1996) , 10.1103/PHYSREVB.54.5381
P Renteln, L Smolin, A lattice approach to spinorial quantum gravity Classical and Quantum Gravity. ,vol. 6, pp. 275- 294 ,(1989) , 10.1088/0264-9381/6/3/009