On the diffeomorphism commutators of lattice quantum gravity

作者: R Loll

DOI: 10.1088/0264-9381/15/4/008

关键词:

摘要: We show that the algebra of discretized spatial diffeomorphism constraints in Hamiltonian lattice quantum gravity closes without anomalies limit small spacing. The result holds for arbitrary factor-ordering and a variety different discretizations continuum constraints, thus generalizes an earlier calculation by Renteln.

参考文章(25)
Lee Smolin, Mark A. Miller, Ola Bostrom, A New discretization of classical and quantum general relativity arXiv: General Relativity and Quantum Cosmology. ,(1994)
Hugo Fort, Rodolfo Gambini, Jorge Pullin, Lattice knot theory and quantum gravity in the loop representation Physical Review D. ,vol. 56, pp. 2127- 2143 ,(1997) , 10.1103/PHYSREVD.56.2127
P Renteln, Some results of SU(2) spinorial lattice gravity Classical and Quantum Gravity. ,vol. 7, pp. 493- 502 ,(1990) , 10.1088/0264-9381/7/3/023
Carlo Rovelli, Lee Smolin, Loop space representation of quantum general relativity Nuclear Physics. ,vol. 331, pp. 80- 152 ,(1990) , 10.1016/0550-3213(90)90019-A
P Renteln, L Smolin, A lattice approach to spinorial quantum gravity Classical and Quantum Gravity. ,vol. 6, pp. 275- 294 ,(1989) , 10.1088/0264-9381/6/3/009
R. Loll, Non-perturbative solutions for lattice quantum gravity Nuclear Physics. ,vol. 444, pp. 619- 639 ,(1995) , 10.1016/0550-3213(95)00184-T
N. C. Tsamis, R. P. Woodard, The factor-ordering problem must be regulated. Physical Review D. ,vol. 36, pp. 3641- 3650 ,(1987) , 10.1103/PHYSREVD.36.3641
Abhay Ashtekar, New variables for classical and quantum gravity. Physical Review Letters. ,vol. 57, pp. 2244- 2247 ,(1986) , 10.1103/PHYSREVLETT.57.2244
Renate Loll, Further results on geometric operators in quantum gravity Classical and Quantum Gravity. ,vol. 14, pp. 1725- 1741 ,(1997) , 10.1088/0264-9381/14/7/010