Nonexistence of permutation binomials of certain shapes

作者: Ariane M. Masuda , Michael E. Zieve

DOI: 10.37236/1013

关键词:

摘要: Suppose $x^m+ax^n$ is a permutation polynomial over ${\Bbb F}_p$, where $p>5$ prime and $m>n>0$ $a\in{\Bbb F}_p^*$. We prove that $\gcd(m-n,p-1)\notin\{2,4\}$. In the special case either $(p-1)/2$ or $(p-1)/4$ prime, this was conjectured in recent paper by Masuda, Panario Wang.

参考文章(1)
A. Masuda, D. Panario, Q. Wang, The Number of Permutation Binomials over ${\Bbb F}_{4p+1}$ where $p$ and $4p+1$ are Primes Electronic Journal of Combinatorics. ,vol. 13, pp. 65- ,(2006) , 10.37236/1091