The Number of Permutation Binomials over ${\Bbb F}_{4p+1}$ where $p$ and $4p+1$ are Primes

作者: A. Masuda , D. Panario , Q. Wang

DOI: 10.37236/1091

关键词:

摘要: We give a characterization of permutation polynomials over finite field based on their coefficients, similar to Hermite's Criterion. Then, we use this result obtain formula for the total number monic binomials degree less than $4p$ ${\Bbb F}_{4p+1}$, where $p$ and $4p+1$ are primes, in terms numbers three special types binomials. also briefly discuss case $q=2p+1$ with $q$ primes.

参考文章(10)
Amir Akbary, Qiang Wang, A generalized Lucas sequence and permutation binomials Proceedings of the American Mathematical Society. ,vol. 134, pp. 15- 22 ,(2005) , 10.1090/S0002-9939-05-08220-1
Rudolf Lidl, Winfried B. Müller, Permutation Polynomials in RSA-Cryptosystems Advances in Cryptology. pp. 293- 301 ,(1984) , 10.1007/978-1-4684-4730-9_23
Jack Levine, J. V. Brawley, SOME CRYPTOGRAPHIC APPLICATIONS OF PERMUTATION POLYNOMIALS Cryptologia. ,vol. 1, pp. 76- 92 ,(1977) , 10.1080/0161-117791832814
Luyan Wang, On Permutation Polynomials Finite Fields and Their Applications. ,vol. 8, pp. 311- 322 ,(2002) , 10.1006/FFTA.2001.0342
Wensong Chu, Solomon W. Golomb, Circular Tuscan-k Arrays from Permutation Binomials Journal of Combinatorial Theory, Series A. ,vol. 97, pp. 195- 202 ,(2002) , 10.1006/JCTA.2001.3221
L. Carlitz, Some theorems on permutation polynomials Bulletin of the American Mathematical Society. ,vol. 68, pp. 120- 122 ,(1962) , 10.1090/S0002-9904-1962-10750-2
Ronald L. Rivest, Permutation Polynomials Modulo 2w Finite Fields and Their Applications. ,vol. 7, pp. 287- 292 ,(2001) , 10.1006/FFTA.2000.0282
David London, Zvi Ziegler, FUNCTIONS OVER THE RESIDUE FIELD MODULO A PRIME Journal of The Australian Mathematical Society. ,vol. 7, pp. 410- 416 ,(1967) , 10.1017/S1446788700004213
Paulo Ribenboim, The Book of Prime Number Records ,(1988)
Harald Niederreiter, Rudolf Lide, Finite fields ,(1996)