Multi-domain sentiment analysis with mimicked and polarized word embeddings for human–robot interaction

作者: Mattia Atzeni , Diego Reforgiato Recupero

DOI: 10.1016/J.FUTURE.2019.10.012

关键词:

摘要: … In this paper, instead, the attention mechanism is used to give higher weights to hidden states associated with more relevant words. Intuitively, this plays a pivotal role both for improving …

参考文章(79)
David H. Wolpert, Original Contribution: Stacked generalization Neural Networks. ,vol. 5, pp. 241- 259 ,(1992) , 10.1016/S0893-6080(05)80023-1
Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, Sequential model-based optimization for general algorithm configuration learning and intelligent optimization. pp. 507- 523 ,(2011) , 10.1007/978-3-642-25566-3_40
Radim Řehůřek, Petr Sojka, Software Framework for Topic Modelling with Large Corpora University of Malta. ,(2010)
Yoshua Bengio, Xavier Glorot, Understanding the difficulty of training deep feedforward neural networks international conference on artificial intelligence and statistics. pp. 249- 256 ,(2010)
Dragos Datcu, Leon J. M. Rothkrantz, Semantic Audiovisual Data Fusion for Automatic Emotion Recognition Euromdia'2008, Porto, Portugal. pp. 411- 435 ,(2015) , 10.1002/9781118910566.CH16
Klaus Greff, Rupesh K. Srivastava, Jan Koutnik, Bas R. Steunebrink, Jurgen Schmidhuber, LSTM: A Search Space Odyssey IEEE Transactions on Neural Networks. ,vol. 28, pp. 2222- 2232 ,(2017) , 10.1109/TNNLS.2016.2582924
Lester W. Mackey, David Lin, Joseph Sill, Gábor Takács, Feature-Weighted Linear Stacking arXiv: Learning. ,(2009)
Joe H. Ward, Hierarchical Grouping to Optimize an Objective Function Journal of the American Statistical Association. ,vol. 58, pp. 236- 244 ,(1963) , 10.1080/01621459.1963.10500845
Fernando Alonso-Martín, María Malfaz, João Sequeira, Javier Gorostiza, Miguel Salichs, A Multimodal Emotion Detection System during Human–Robot Interaction Sensors. ,vol. 13, pp. 15549- 15581 ,(2013) , 10.3390/S131115549
Michael Jahrer, Andreas Töscher, Robert Legenstein, Combining predictions for accurate recommender systems knowledge discovery and data mining. pp. 693- 702 ,(2010) , 10.1145/1835804.1835893