A Beale–Kato–Majda Criterion for Three Dimensional Compressible Viscous Heat-Conductive Flows

作者: Yongzhong Sun , Chao Wang , Zhifei Zhang

DOI: 10.1007/S00205-011-0407-1

关键词:

摘要: We prove a blow-up criterion in terms of the upper bound (ρ, ρ−1, θ) for strong solution to three dimensional compressible viscous heat-conductive flows. The main ingredient proof is an priori estimate quantity independently introduced Haspot (Regularity weak solutions isentropic Navier–Stokes equation, arXiv:1001.1581, 2010) and Sun et al. (J Math Pure Appl 95:36–47, 2011), whose divergence can be viewed as effective flux.

参考文章(27)
Jishan Fan, Song Jiang, Yaobin Ou, A blow-up criterion for compressible viscous heat-conductive flows Annales De L Institut Henri Poincare-analyse Non Lineaire. ,vol. 27, pp. 337- 350 ,(2010) , 10.1016/J.ANIHPC.2009.09.012
Pierre Louis Lions, Mathematical topics in fluid mechanics Clarendon Press. ,(1996)
Lingyu Jiang, Yidong Wang, On the blow up criterion for the 2-D compressible Navier-Stokes equations Czechoslovak Mathematical Journal. ,vol. 60, pp. 195- 209 ,(2010) , 10.1007/S10587-010-0009-3
E. Feireisl, A. Novotný, H. Petzeltová, On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations Journal of Mathematical Fluid Mechanics. ,vol. 3, pp. 358- 392 ,(2001) , 10.1007/PL00000976
Raphaël Danchin, LOCAL THEORY IN CRITICAL SPACES FOR COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE GASES Communications in Partial Differential Equations. ,vol. 26, pp. 1183- 1233 ,(2001) , 10.1081/PDE-100106132
Paolo Acquistapace, On BMO regularity for linear elliptic systems Annali di Matematica Pura ed Applicata. ,vol. 161, pp. 231- 269 ,(1992) , 10.1007/BF01759640
Song Jiang, Ping Zhang, Axisymmetric solutions of the 3D Navier–Stokes equations for compressible isentropic fluids Journal de Mathématiques Pures et Appliquées. ,vol. 82, pp. 949- 973 ,(2003) , 10.1016/S0021-7824(03)00015-1
Benöit Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations Communications in Partial Differential Equations. ,vol. 22, pp. 977- 1008 ,(1997) , 10.1080/03605309708821291