From Whole Slide Tissues to Knowledge: Mapping Sub-cellular Morphology of Cancer

作者: Tahsin Kurc , Ashish Sharma , Rajarsi Gupta , Le Hou , Han Le

DOI: 10.1007/978-3-030-46643-5_37

关键词:

摘要: Digital pathology has made great strides in the past decade to create ability computationally extract rich information about cancer morphology with traditional image analysis and deep learning. High-resolution whole slide images of tissue samples can be analyzed quantitatively characterize cellular sub-cellular phenotypic imaging features. These features combined genomics clinical data used advance our understanding provide opportunities discovery, design, evaluation new treatment strategies. Researchers need reliable efficient algorithms software tools that support indexing, query, exploration vast quantities order maximize full potential digital research. In this paper we present a brief overview recent work done by group, as well others, systems.

参考文章(30)
Satinderjit Singh, An Alternate Algorithm for (3x3) Median Filtering of Digital Images international conference on bioinformatics. ,vol. 1, pp. 7- 9 ,(2012) , 10.24297/IJCT.V1I1.6732
Chris Allan, Jean-Marie Burel, Josh Moore, Colin Blackburn, Melissa Linkert, Scott Loynton, Donald MacDonald, William J Moore, Carlos Neves, Andrew Patterson, Michael Porter, Aleksandra Tarkowska, Brian Loranger, Jerome Avondo, Ingvar Lagerstedt, Luca Lianas, Simone Leo, Katherine Hands, Ron T Hay, Ardan Patwardhan, Christoph Best, Gerard J Kleywegt, Gianluigi Zanetti, Jason R Swedlow, OMERO: flexible, model-driven data management for experimental biology Nature Methods. ,vol. 9, pp. 245- 253 ,(2012) , 10.1038/NMETH.1896
A. H. Beck, A. R. Sangoi, S. Leung, R. J. Marinelli, T. O. Nielsen, M. J. van de Vijver, R. B. West, M. van de Rijn, D. Koller, Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Science Translational Medicine. ,vol. 3, ,(2011) , 10.1126/SCITRANSLMED.3002564
Chao Wang, Thierry Pécot, Debra L Zynger, Raghu Machiraju, Charles L Shapiro, Kun Huang, Identifying survival associated morphological features of triple negative breast cancer using multiple datasets. Journal of the American Medical Informatics Association. ,vol. 20, pp. 680- 687 ,(2013) , 10.1136/AMIAJNL-2012-001538
Rivka Colen, Ian Foster, Robert Gatenby, Mary Ellen Giger, Robert Gillies, David Gutman, Matthew Heller, Rajan Jain, Anant Madabhushi, Subha Madhavan, Sandy Napel, Arvind Rao, Joel Saltz, James Tatum, Roeland Verhaak, Gary Whitman, NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures Translational Oncology. ,vol. 7, pp. 556- 569 ,(2014) , 10.1016/J.TRANON.2014.07.007
Charles Anderson, Docker [Software engineering] IEEE Software. ,vol. 32, pp. 102- c3 ,(2015) , 10.1109/MS.2015.62
Fuyong Xing, Lin Yang, Robust Nucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review IEEE Reviews in Biomedical Engineering. ,vol. 9, pp. 234- 263 ,(2016) , 10.1109/RBME.2016.2515127
Andrew Janowczyk, Anant Madabhushi, Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases. Journal of Pathology Informatics. ,vol. 7, pp. 29- 29 ,(2016) , 10.4103/2153-3539.186902
Kun-Hsing Yu, Ce Zhang, Gerald J Berry, Russ B Altman, Christopher Ré, Daniel L Rubin, Michael Snyder, None, Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features. Nature Communications. ,vol. 7, pp. 12474- 12474 ,(2016) , 10.1038/NCOMMS12474
G. Louppe, L. Rollus, L. Wehenkel, P. Geurts, R. Vandaele, B. Stévens, P. Kainz, R. Marée, R. Hoyoux, J.-M. Begon, Cytomine: An Open-Source Software For Collaborative Analysis Of Whole-Slide Images Diagnostic Pathology. ,vol. 1, ,(2016) , 10.17629/WWW.DIAGNOSTICPATHOLOGY.EU-2016-8:151