Bayesian Network Inference Algorithms

作者: Radhakrishnan Nagarajan , Marco Scutari , Sophie Lèbre

DOI: 10.1007/978-1-4614-6446-4_4

关键词:

摘要: Chapters 2 and 3 discussed the importance of learning structure parameters Bayesian networks from observational interventional data sets. inference on other hand is often a follow-up to network deals with inferring state set variables given others as evidence. Such an approach eliminates need for additional experiments therefore extremely helpful. In this chapter, we will introduce inferential techniques static dynamic their applications gene expression profiles.

参考文章(8)
Nir Friedman, Daniel L. Koller, Probabilistic graphical models : principles and techniques The MIT Press. ,(2009)
Kevin B. Korb, Lucas R. Hope, Ann E. Nicholson, Karl Axnick, Varieties of Causal Intervention PRICAI 2004: Trends in Artificial Intelligence. pp. 322- 331 ,(2004) , 10.1007/978-3-540-28633-2_35
Karen Sachs, Omar Perez, Dana Pe'er, Douglas A Lauffenburger, Garry P Nolan, Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data Science. ,vol. 308, pp. 523- 529 ,(2005) , 10.1126/SCIENCE.1105809
Stuart Russell, Kevin Patrick Murphy, Dynamic bayesian networks: representation, inference and learning University of California, Berkeley. ,(2002)
J. Cheng, M. J. Druzdzel, AIS-BN: an adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks Journal of Artificial Intelligence Research. ,vol. 13, pp. 155- 188 ,(2000) , 10.1613/JAIR.764
George Casella, Christian P. Robert, Introducing Monte Carlo Methods with R ,(2009)
Kevin B. Korb, Ann E. Nicholson, Bayesian Artificial Intelligence, Second Edition CRC Press. ,(2010) , 10.1201/B10391