Linear Hahn–Banach extension operators

作者: Brailey Sims , David Yost

DOI: 10.1017/S0013091500006908

关键词:

摘要: Given any subspace N of a Banach space X, there is M containing and the same density character as N, for which exists linear Hahn–Banach extension operator from M* to X*. This result was first proved by Heinrich Mankiewicz [4, Proposition 3.4] using some deeper results Model Theory. More precisely, they used version Lowenheim–Skolem theorem due Stern [11], in turn relies on Keisler–Shelah theorems Previously Lindenstrauss [7], finite dimensional lemma compactness argument, obtained this reflexive spaces. We shall show that leads directly general result, without appeal

参考文章(13)
Francis Sullivan, Geometrical properties determined by the higher duals of a Banach space Illinois Journal of Mathematics. ,vol. 21, pp. 315- 331 ,(1977) , 10.1215/IJM/1256049417
S. Heinrich, P. Mankiewicz, Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces Studia Mathematica. ,vol. 73, pp. 225- 251 ,(1982) , 10.4064/SM-73-3-225-251
Shizuo KAKUTANI, Some characterizations of Euclidean space Japanese journal of mathematics :transactions and abstracts. ,vol. 16, pp. 93- 97 ,(1940) , 10.4099/JJM1924.16.0_93
Joram Lindenstrauss, On nonseparable reflexive Banach spaces Bulletin of the American Mathematical Society. ,vol. 72, pp. 967- 970 ,(1966) , 10.1090/S0002-9904-1966-11606-3
R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation. Transactions of the American Mathematical Society. ,vol. 95, pp. 238- 255 ,(1960) , 10.1090/S0002-9947-1960-0113125-4
John Giles, David Gregory, Brailey Sims, GEOMETRICAL IMPLICATIONS OF UPPER SEMI-CONTINUITY OF THE DUALITY MAPPING ON A BANACH SPACE Pacific Journal of Mathematics. ,vol. 79, pp. 99- 109 ,(1978) , 10.2140/PJM.1978.79.99
A. E. Taylor, The extension of linear functionals Duke Mathematical Journal. ,vol. 5, pp. 538- 547 ,(1939) , 10.1215/S0012-7094-39-00545-4
Jacques Stern, Ultrapowers and local properties of Banach spaces Transactions of the American Mathematical Society. ,vol. 240, pp. 231- 252 ,(1978) , 10.1090/S0002-9947-1978-0489594-0