Assessing dynamic functional connectivity in heterogeneous samples

作者: B. C. L. Lehmann , S. R. White , R. N. Henson , Cam-CAN , L. Geerligs

DOI: 10.1101/118968

关键词:

摘要: Several methods have been developed to measure dynamic functional connectivity (dFC) in fMRI data. These are often based on a sliding-window analysis, which aims capture how the brain9s organization varies over course of scan. The aim many studies is compare dFC across groups, such as younger versus older people. However, spurious group differences measured may be caused by other sources heterogeneity between For example, shape haemodynamic response function (HRF) and levels measurement noise found vary with age. We use generic simulation framework for data investigate effect estimates dFC. Our findings show that, despite no true dFC, individual can result from (non-dynamic) features data, neural autocorrelation, HRF shape, strength noise. also find that common k-means multilayer modularity approaches detect due inappropriate setting their hyperparameters. therefore need consider alternative individuals before concluding

参考文章(37)
F. Gregory Ashby, Statistical Analysis of fMRI Data ,(2011)
James M. Shine, Oluwasanmi Koyejo, Peter T. Bell, Krzysztof J. Gorgolewski, Moran Gilat, Russell A. Poldrack, Estimation of dynamic functional connectivity using Multiplication of Temporal Derivatives NeuroImage. ,vol. 122, pp. 399- 407 ,(2015) , 10.1016/J.NEUROIMAGE.2015.07.064
Fikret Işik Karahanoğlu, Dimitri Van De Ville, Transient brain activity disentangles fMRI resting-state dynamics in terms of spatially and temporally overlapping networks Nature Communications. ,vol. 6, pp. 7751- 7751 ,(2015) , 10.1038/NCOMMS8751
Mohammad R. Arbabshirani, Eswar Damaraju, Ronald Phlypo, Sergey Plis, Elena Allen, Sai Ma, Daniel Mathalon, Adrian Preda, Jatin G. Vaidya, Tülay Adali, Vince D. Calhoun, Impact of autocorrelation on functional connectivity. NeuroImage. ,vol. 102, pp. 294- 308 ,(2014) , 10.1016/J.NEUROIMAGE.2014.07.045
R. Matthew Hutchison, Thilo Womelsdorf, Elena A. Allen, Peter A. Bandettini, Vince D. Calhoun, Maurizio Corbetta, Stefania Della Penna, Jeff H. Duyn, Gary H. Glover, Javier Gonzalez-Castillo, Daniel A. Handwerker, Shella Keilholz, Vesa Kiviniemi, David A. Leopold, Francesco de Pasquale, Olaf Sporns, Martin Walter, Catie Chang, Dynamic functional connectivity: Promise, issues, and interpretations NeuroImage. ,vol. 80, pp. 360- 378 ,(2013) , 10.1016/J.NEUROIMAGE.2013.05.079
Mark W. Woolrich, Brian D. Ripley, Michael Brady, Stephen M. Smith, Temporal autocorrelation in univariate linear modeling of FMRI data. NeuroImage. ,vol. 14, pp. 1370- 1386 ,(2001) , 10.1006/NIMG.2001.0931
Mohammad R. Arbabshirani, Eduardo Castro, Vince D. Calhoun, Accurate classification of schizophrenia patients based on novel resting-state fMRI features international conference of the ieee engineering in medicine and biology society. ,vol. 2014, pp. 6691- 6694 ,(2014) , 10.1109/EMBC.2014.6945163
Thomas W Allan, Susan T Francis, Cesar Caballero-Gaudes, Peter G Morris, Elizabeth B Liddle, Peter F Liddle, Matthew J Brookes, Penny A Gowland, None, Functional Connectivity in MRI Is Driven by Spontaneous BOLD Events PLOS ONE. ,vol. 10, pp. e0124577- ,(2015) , 10.1371/JOURNAL.PONE.0124577
Jonathan D. Power, Kelly A. Barnes, Abraham Z. Snyder, Bradley L. Schlaggar, Steven E. Petersen, Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion NeuroImage. ,vol. 59, pp. 2142- 2154 ,(2012) , 10.1016/J.NEUROIMAGE.2011.10.018
Ed Bullmore, Olaf Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems Nature Reviews Neuroscience. ,vol. 10, pp. 186- 198 ,(2009) , 10.1038/NRN2575