Numerical study of three-dimensional Kolmogorov flow at high Reynolds numbers

作者: Vadim Borue , Steven A. Orszag

DOI: 10.1017/S0022112096001310

关键词:

摘要: High-resolution numerical simulations (with up to 2563 modes) are performed for three-dimensional flow driven by the large-scale constant force fy = F cos(x) in a periodic box of size L 2π (Kolmogorov flow). High Reynolds number is attained solving Navier-Stokes equations with hyperviscosity (-1)h+1Δh (h 8). It shown that mean velocity profile Kolmogorov nearly independent and has ‘laminar’ form vy V eddy viscosity. Nevertheless, highly turbulent intermittent even at large scales. The intensities, energy dissipation rate various terms balance equation have simple coordinate dependence + b cos(2x) a, constants). This makes good model explore applicability turbulence transport approximations open time-dependent flows. turns out standard expression effective (eddy) viscosity used K-[Escr ] models overpredicts regions high shear should be modified account non-equilibrium character flow. Also scales anisotropic but isotropic small important problem local isotropy systematically studied measuring longitudinal transverse components spectra crosscorrelation velocities velocity-pressure-gradient spectra. Cross-spectra which vanish case decay only algebraically somewhat faster than corresponding correlations. verified pressure plays crucial role making locally isotropic. demonstrated may considered approximately ten times smaller scale

参考文章(36)
Basil Nicolaenko, Zhen-Su She, Turbulent Bursts, Inertial Sets and Symmetry-Breaking Homoclinic Cycles in Periodic Navier-Stokes Flows Turbulence in Fluid Flows. ,vol. 55, pp. 123- 136 ,(1993) , 10.1007/978-1-4612-4346-5_8
P. L. Sulem, Z. S. She, H. Scholl, U. Frisch, Generation of large-scale structures in threedimensional flow lacking parity-invariance Journal of Fluid Mechanics. ,vol. 205, pp. 341- 358 ,(1989) , 10.1017/S0022112089002065
Victor Yakhot, Steven A. Orszag, Renormalization-group analysis of turbulence. Physical Review Letters. ,vol. 57, pp. 1722- 1724 ,(1986) , 10.1103/PHYSREVLETT.57.1722
Local isotropy of the smallest scales of turbulent scalar and velocity fields Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 434, pp. 139- 147 ,(1991) , 10.1098/RSPA.1991.0085
V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, C. G. Speziale, Development of turbulence models for shear flows by a double expansion technique Physics of Fluids. ,vol. 4, pp. 1510- 1520 ,(1992) , 10.1063/1.858424
Jackson R. Herring, Olivier Métais, Numerical experiments in forced stably stratified turbulence Journal of Fluid Mechanics. ,vol. 202, pp. 97- 115 ,(1989) , 10.1017/S0022112089001114
Detlef Lohse, Axel Müller-Groeling, Bottleneck Effects in Turbulence: Scaling Phenomena inrversuspSpace Physical Review Letters. ,vol. 74, pp. 1747- 1750 ,(1995) , 10.1103/PHYSREVLETT.74.1747
James G. Brasseur, Chao‐Hsuan Wei, Interscale dynamics and local isotropy in high Reynolds number turbulence within triadic interactions Physics of Fluids. ,vol. 6, pp. 842- 870 ,(1994) , 10.1063/1.868322
D. H. Porter, A. Pouquet, P. R. Woodward, Three-dimensional supersonic homogeneous turbulence: A numerical study Physical Review Letters. ,vol. 68, pp. 3156- 3159 ,(1992) , 10.1103/PHYSREVLETT.68.3156
Victor Yakhot, Steven A. Orszag, Renormalization group analysis of turbulence I. Basic theory Journal of Scientific Computing. ,vol. 1, pp. 3- 51 ,(1986) , 10.1007/BF01061452