Kernel Association for Classification and Prediction: A Survey

作者: Yuichi Motai

DOI: 10.1109/TNNLS.2014.2333664

关键词:

摘要: Kernel association (KA) in statistical pattern recognition used for classification and prediction have recently emerged a machine learning signal processing context. This survey outlines the latest trends innovations of kernel framework big data analysis. KA topics include offline learning, distributed database, online its prediction. The structural presentation comprehensive list references are geared to provide useful overview this evolving field both specialists relevant scholars.

参考文章(204)
K. Kuusilinna, T. Hämäläinen, J. Saarinen, V. Lahtinen, Finite state machine encoding for VHDL synthesis IEE Proceedings - Computers and Digital Techniques. ,vol. 148, pp. 23- 30 ,(2001) , 10.1049/IP-CDT:20010210
Shai Shalev-Shwartz, Ofer Dekel, Koby Crammer, Koby Crammer, Yoram Singer, Joseph Keshet, Online Passive-Aggressive Algorithms Journal of Machine Learning Research. ,vol. 7, pp. 551- 585 ,(2006)
Khairul Azha A. Aziz, Ridza Azri Ramlee, Shahrum Shah Abdullah, Ahmad Nizam Jahari, Face Detection Using Radial Basis Function Neural Networks with Variance Spread Value soft computing and pattern recognition. pp. 399- 403 ,(2009) , 10.1109/SOCPAR.2009.84
Colin Campbell, Kernel methods: a survey of current techniques Neurocomputing. ,vol. 48, pp. 63- 84 ,(2002) , 10.1016/S0925-2312(01)00643-9
Lei Jia, Shizhong Liao, Hyperkernel Construction for Support Vector Machines international conference on natural computation. ,vol. 2, pp. 76- 80 ,(2008) , 10.1109/ICNC.2008.156
Seung-Jean Kim, Alessandro Magnani, Stephen Boyd, Optimal kernel selection in Kernel Fisher discriminant analysis Proceedings of the 23rd international conference on Machine learning - ICML '06. pp. 465- 472 ,(2006) , 10.1145/1143844.1143903
Jian Yang, A.F. Frangi, Jing-Yu Yang, David Zhang, Zhong Jin, KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 27, pp. 230- 244 ,(2005) , 10.1109/TPAMI.2005.33
Yuichi Motai, Hiroyuki Yoshida, Principal Composite Kernel Feature Analysis: Data-Dependent Kernel Approach IEEE Transactions on Knowledge and Data Engineering. ,vol. 25, pp. 1863- 1875 ,(2013) , 10.1109/TKDE.2012.110
Hongbin Liu, Mingzhi Huang, Jeong Tai Kim, ChangKyoo Yoo, Adaptive neuro-fuzzy inference system based faulty sensor monitoring of indoor air quality in a subway station Korean Journal of Chemical Engineering. ,vol. 30, pp. 528- 539 ,(2013) , 10.1007/S11814-012-0197-7
Grigorios Tsoumakas, Lefteris Angelis, Ioannis Vlahavas, Clustering classifiers for knowledge discovery from physically distributed databases data and knowledge engineering. ,vol. 49, pp. 223- 242 ,(2004) , 10.1016/J.DATAK.2003.09.002