Engineering bacteria for biogenic synthesis of chalcogenide nanomaterials.

作者: Prithiviraj Chellamuthu , Frances Tran , Kalinga Pavan T. Silva , Marko S. Chavez , Mohamed Y. El-Naggar

DOI: 10.1111/1751-7915.13320

关键词:

摘要: Microbes naturally build nanoscale structures, including structures assembled from inorganic materials. Here, we combine the natural capabilities of microbes with engineered genetic control circuits to demonstrate ability biological synthesis chalcogenide nanomaterials in a heterologous host. We transferred reductase genes both Shewanella sp. ANA-3 and Salmonella enterica serovar Typhimurium into host (Escherichia coli) examined mechanisms that regulate properties biogenic nanomaterials. Expression arsenate thiosulfate E. coli resulted arsenic sulfide In addition processing starting materials via redox enzymes, cellular components also nucleated formation The shape nanomaterial was influenced by bacterial culture, synthetic strain producing nanospheres conditioned media or cultures wild-type nanofibres. diameter these nanofibres depended on context synthesis. These results potential for controlled combining wild tools biology.

参考文章(62)
San-Weong Bang, Douglas S. Clark, Jay D. Keasling, Cadmium, lead, and zinc removal by expression of the thiosulfate reductase gene from Salmonella typhimurium in Escherichia coli Biotechnology Letters. ,vol. 22, pp. 1331- 1335 ,(2000) , 10.1023/A:1005611331948
C Diorio, J Cai, J Marmor, R Shinder, M S DuBow, An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. Journal of Bacteriology. ,vol. 177, pp. 2050- 2056 ,(1995) , 10.1128/JB.177.8.2050-2056.1995
Jaya Mary Jacob, Piet N. L. Lens, Raj Mohan Balakrishnan, Microbial synthesis of chalcogenide semiconductor nanoparticles: a review Microbial Biotechnology. ,vol. 9, pp. 11- 21 ,(2016) , 10.1111/1751-7915.12297
Ian R. McFarlane, Julia R. Lazzari-Dean, Mohamed Y. El-Naggar, Field effect transistors based on semiconductive microbially synthesized chalcogenide nanofibers. Biophysical Journal. ,vol. 13, pp. 364- 373 ,(2015) , 10.1016/J.BPJ.2014.11.2668
C. W. Saltikov, D. K. Newman, Genetic identification of a respiratory arsenate reductase Proceedings of the National Academy of Sciences of the United States of America. ,vol. 100, pp. 10983- 10988 ,(2003) , 10.1073/PNAS.1834303100
D. L. Shis, M. R. Bennett, Library of synthetic transcriptional AND gates built with split T7 RNA polymerase mutants Proceedings of the National Academy of Sciences of the United States of America. ,vol. 110, pp. 5028- 5033 ,(2013) , 10.1073/PNAS.1220157110
Haifeng Bao, Zhisong Lu, Xiaoqiang Cui, Yan Qiao, Jun Guo, James M. Anderson, Chang Ming Li, Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomaterialia. ,vol. 6, pp. 3534- 3541 ,(2010) , 10.1016/J.ACTBIO.2010.03.030
Kannan Badri Narayanan, Natarajan Sakthivel, Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science. ,vol. 156, pp. 1- 13 ,(2010) , 10.1016/J.CIS.2010.02.001
Chongxuan Liu, Yuri A. Gorby, John M. Zachara, Jim K. Fredrickson, Christopher F. Brown, Reduction kinetics of Fe(III), Co(III), U(VI), Cr(VI), and Tc(VII) in cultures of dissimilatory metal‐reducing bacteria Biotechnology and Bioengineering. ,vol. 80, pp. 637- 649 ,(2002) , 10.1002/BIT.10430
Nguyen T. K. Thanh, N. Maclean, S. Mahiddine, Mechanisms of Nucleation and Growth of Nanoparticles in Solution Chemical Reviews. ,vol. 114, pp. 7610- 7630 ,(2014) , 10.1021/CR400544S