An introduction to hidden Markov models and Bayesian networks

作者: Zoubin Ghahramani , None

DOI: 10.1142/S0218001401000836

关键词:

摘要: … We provide a tutorial on learning and inference in hidden Markov models in the context of the recent literature on Bayesian networks. This perspective makes it possible to consider …

参考文章(54)
Zoubin Ghahramani, Michael Jordan, None, Factorial Hidden Markov Models neural information processing systems. ,vol. 29, pp. 472- 478 ,(1995) , 10.1023/A:1007425814087
Lennart Ljung, Torsten Söderström, Theory and Practice of Recursive Identification ,(1983)
Graham C Goodwin, Kwai Sang Sin, None, Adaptive filtering prediction and control ,(1984)
Stuart Russell, Daphne Koller, Keiji Kanazawa, Stochastic simulation algorithms for dynamic probabilistic networks uncertainty in artificial intelligence. pp. 346- 351 ,(1995)
Richard Stanley Zemel, A minimum description length framework for unsupervised learning University of Toronto. ,(1994)
S. L. Lauritzen, D. J. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems Journal of the royal statistical society series b-methodological. ,vol. 50, pp. 415- 448 ,(1990) , 10.1111/J.2517-6161.1988.TB01721.X
Richard A Olshen, Charles J Stone, Leo Breiman, Jerome H Friedman, Classification and regression trees ,(1983)
David Heckerman, A tutorial on learning with Bayesian networks Proceedings of the NATO Advanced Study Institute on Learning in graphical models. pp. 301- 354 ,(1999) , 10.1007/978-3-540-85066-3_3
Hagai Attias, Inferring parameters and structure of latent variable models by variational bayes uncertainty in artificial intelligence. pp. 21- 30 ,(1999)
Zoubin Ghahramani, Geoffrey E Hinton, None, Parameter estimation for linear dynamical systems University of Toronto: Department of Computer Science. ,(1996)