Symmetries of the heat equation on the lattice

作者: Roberto Floreanini , Javier Negro , Luis Miguel Nieto , Luc Vinet

DOI: 10.1007/BF00714402

关键词:

摘要: Discrete versions of the heat equation on two-dimensional uniform lattices are shown to possess same symmetry algebra as their continuum limits. Solutions with definite properties presented.

参考文章(5)
Roberto Floreanini, Luc Vinet, Quantum symmetries of q‐difference equations Journal of Mathematical Physics. ,vol. 36, pp. 3134- 3156 ,(1995) , 10.1063/1.531017
R. Floreanini, J. Letourneux, L. Vinet, Quantum Mechanics and Polynomials of a Discrete Variable Annals of Physics. ,vol. 226, pp. 331- 349 ,(1993) , 10.1006/APHY.1993.1072
Bateman Manuscript, Arthur Erdélyi, Harry Bateman, Higher Transcendental Functions ,(1981)
Roberto Floreanini, Luc Vinet, Symmetries of the q -difference heat equation Letters in Mathematical Physics. ,vol. 32, pp. 37- 44 ,(1994) , 10.1007/BF00761122
Willard Miller, Lie theory and difference equations. II Journal of Mathematical Analysis and Applications. ,vol. 28, pp. 383- 399 ,(1969) , 10.1016/0022-247X(69)90037-7