Large Deviations for Random Spectral Measures and Sum Rules

作者: Fabrice Gamboa , Alain Rouault

DOI:

关键词:

摘要: We prove a Large Deviation Principle for the random spec- tral measure associated to pair $(H_N; e)$ where $H_N$ is sampled in GUE(N) and e fixed unit vector (and more generally $\beta$- extension of this model). The rate function consists two parts. contribution absolutely continuous part reversed Kullback information with respect semicircle distribution singular connected extreme eigenvalue GUE. This method also applied Laguerre Jacobi ensembles, but thoses cases expression not so explicit.

参考文章(23)
Ofer Zeitouni, Greg W. Anderson, Alice Guionnet, An Introduction to Random Matrices ,(2009)
J. P. Burg, Maximum entropy spectral analysis Proc. the 37th Meeting of the Society of Exploration Geophysicists. ,(1967)
Barry Simon, OPUC on one foot Bulletin of the American Mathematical Society. ,vol. 42, pp. 431- 460 ,(2005) , 10.1090/S0273-0979-05-01075-X
Ioana Dumitriu, Alan Edelman, Matrix models for beta ensembles Journal of Mathematical Physics. ,vol. 43, pp. 5830- 5847 ,(2002) , 10.1063/1.1507823
F. Gamboa, E. Gassiat, BAYESIAN METHODS AND MAXIMUM ENTROPY FOR ILL-POSED INVERSE PROBLEMS Annals of Statistics. ,vol. 25, pp. 328- 350 ,(1997) , 10.1214/AOS/1034276632
G. Ben Arous, A. Dembo, A. Guionnet, Aging of spherical spin glasses Probability Theory and Related Fields. ,vol. 120, pp. 1- 67 ,(2001) , 10.1007/PL00008774
Fumio Hiai, Dénes Petz, Eigenvalue Density of the Wishart Matrix and Large Deviations Infinite Dimensional Analysis, Quantum Probability and Related Topics. ,vol. 01, pp. 633- 646 ,(1998) , 10.1142/S021902579800034X