The Generalized Order Linear Complementarity Problem

作者: M. Seetharama Gowda , Roman Sznajder

DOI: 10.1137/S0895479892237859

关键词:

摘要: The generalized order linear complementarity problem (in the setting of a finite dimensional vector lattice) is finding solution to piecewise-linear system $$ x \wedge (M_{1}x + q_{l}) (M_{2}x q_{2}) \cdots (M_{k}x q_{k}) = 0, where $M_i$'s are transformations and $q_i$'s vectors. This equivalent genaralized considered by Cottle Dantzig [J. Combin. Theory, 8 (1970), pp. 79-90.]. Using degree theory, comprehensive analysis existence, uniqueness, stability aspects this presented.

参考文章(31)
Jong-Shi Pang, THE IMPLICIT COMPLEMENTARITY PROBLEM Nonlinear Programming 4#R##N#Proceedings of the Nonlinear Programming Symposium 4 Conducted by the Computer Sciences Department at the University of Wisconsin–Madison, July 14–16, 1980. pp. 487- 518 ,(1981) , 10.1016/B978-0-12-468662-5.50022-7
Richard W. Cottle, Solution rays for a class of complementarity problems Pivoting and Extension. pp. 59- 70 ,(1974) , 10.1007/BFB0121241
Anthony L. Peressini, Ordered topological vector spaces Harper & Row. ,(1967)
G. Isac, M. Kostreva, The generalized order complementarity problem Journal of Optimization Theory and Applications. ,vol. 71, pp. 517- 534 ,(1991) , 10.1007/BF00941401
R.W. Cottle, J.-S. Pang, V. Venkateswaran, Sufficient matrices and the linear complementarity problem Linear Algebra and its Applications. ,vol. 114, pp. 231- 249 ,(1989) , 10.1016/0024-3795(89)90463-1
HA Cu Duong, Stability of the linear complementarity problem at a solution point Mathematical Programming. ,vol. 31, pp. 327- 338 ,(1985) , 10.1007/BF02591954
S. Karamardian, An existence theorem for the complementarity problem Journal of Optimization Theory and Applications. ,vol. 19, pp. 227- 232 ,(1976) , 10.1007/BF00934094