Identification of and symmetry computation for crystal nets

作者: Olaf Delgado-Friedrichs , Michael O'Keeffe

DOI: 10.1107/S0108767303012017

关键词:

摘要: Exact methods are presented to determine whether two periodic nets combinatorially isomorphic and compute the full combinatorial symmetry group of a net. It is found that for large class nets, which includes all known zeolite most other crystal this can be realized as crystallographic space group.

参考文章(29)
M. Bader, W. E. Klee, G. Thimm, The 3-regular nets with four and six vertices per unit cell Zeitschrift Fur Kristallographie. ,vol. 212, pp. 553- 558 ,(1997) , 10.1524/ZKRI.1997.212.8.553
Olaf Delgado Friedrichs, Andreas W. M. Dress, Daniel H. Huson, Jacek Klinowski, Alan L. Mackay, Systematic enumeration of crystalline networks Nature. ,vol. 400, pp. 644- 647 ,(1999) , 10.1038/23210
A. Hannemann, R. Hundt, J. C. Schön, M. Jansen, A New Algorithm for Space-Group Determination Journal of Applied Crystallography. ,vol. 31, pp. 922- 928 ,(1998) , 10.1107/S0021889898008735
Joseph V. Smith, Topochemistry of zeolites and related materials. 1. Topology and geometry Chemical Reviews. ,vol. 88, pp. 149- 182 ,(1988) , 10.1021/CR00083A008
Kim J Yaghi, OM, O'Keeffe, M, Ockwig NW, Chae, HK, Eddaoudi M, Reticular synthesis and the design of new materials Nature. ,vol. 423, pp. 705- 714 ,(2003) , 10.1038/NATURE01650
R. M. Barrer, H. Villiger, The crystal structure of the synthetic zeolite L Zeitschrift Fur Kristallographie. ,vol. 128, pp. 352- 370 ,(1969) , 10.1524/ZKRI.1969.128.3-6.352