Magnetic and 57Fe hyperfine structural features of nitrided austenitic stainless steel

作者: Danilo Olzon-Dionysio , José Domingos Fabris , Maximiliano D Martins , Mariana Andrade Boense Tavares , Jose Domingos Ardisson

DOI: 10.1016/J.SURFCOAT.2020.125544

关键词:

摘要: Abstract Samples of an austenitic stainless steel were plasma-nitrided at 673 K, for 4 h, in 80% H2−20% N2 gas mixture, different pressures: 4; 6 and 10 Torr. The samples characterized by four techniques: X-ray diffraction, Mossbauer spectroscopy, magnetic force microscopy energy dispersive X-ray. nitrogen concentration thickness the nitrided layer was found to be 7 at.% 2 μm 4 Torr-sample; those 10 Torr, 16 24 at.%, with nearly same thickness, namely 7 μm. These values are well correlated framework expanded austenite, as pointed diffraction data. data observed concentration, evidencing absence any domain patterns 6 Torr 10 Torr-samples quite similar, despite great difference their concentrations. 57Fe hyperfine parameters two sample depths assessed collecting distinct backscattering setup geometries. Fitting corresponding spectra model-independent field distributions, starting from very low values, allowed correlating find out that transition paramagnetic austenite occurs smaller fields than it is usually reported scientific literature. Such correlations point formation a submicrometer occurring on outermost surface sample. Despite complexity difficulties differentiating nitrides martensitic structure obtained 10 Torr pressures, results this work strongly indicate existence them layer.

参考文章(37)
D. O. Boerma, S. Y. Grachev, D. M. Borsa, R. Miranda, J. M. Gallego, Relating surface structure and growth mode of gamma ' Fe4N Surface Review and Letters. ,vol. 10, pp. 405- 411 ,(2003) , 10.1142/S0218625X03005116
Arvaidas Galdikas, Teresa Moskalioviene, Stress induced nitrogen diffusion during nitriding of austenitic stainless steel Computational Materials Science. ,vol. 50, pp. 796- 799 ,(2010) , 10.1016/J.COMMATSCI.2010.10.018
O Ozturk, DL Williamson, None, The annealing behavior of implanted nitrogen in fcc stainless steel Hyperfine Interactions. ,vol. 92, pp. 1329- 1337 ,(1994) , 10.1007/BF02065775
A. Martinavičius, G. Abrasonis, W. Möller, C. Templier, J. P. Rivière, A. Declémy, Y. Chumlyakov, Anisotropic ion-enhanced diffusion during ion nitriding of single crystalline austenitic stainless steel Journal of Applied Physics. ,vol. 105, pp. 093502- ,(2009) , 10.1063/1.3120912
S. Mändl, B. Rauschenbach, Concentration dependent nitrogen diffusion coefficient in expanded austenite formed by ion implantation Journal of Applied Physics. ,vol. 91, pp. 9737- 9742 ,(2002) , 10.1063/1.1479749
R. Wei, J.J. Vajo, J.N. Matossian, P.J. Wilbur, J.A. Davis, D.L. Williamson, G.A. Collins, A comparative study of beam ion implantation, plasma ion implantation and nitriding of AISI 304 stainless steel Surface and Coatings Technology. ,vol. 83, pp. 235- 242 ,(1996) , 10.1016/0257-8972(95)02825-0
G. Abrasonis, J. P. Rivière, C. Templier, A. Declémy, L. Pranevicius, X. Milhet, Ion beam nitriding of single and polycrystalline austenitic stainless steel Journal of Applied Physics. ,vol. 97, pp. 083531- ,(2005) , 10.1063/1.1863455
DL Williamson, Orhan Ozturk, Rong Wei, Paul J Wilbur, Metastable phase formation and enhanced diffusion in f.c.c. alloys under high dose, high flux nitrogen implantation at high and low ion energies Surface & Coatings Technology. ,vol. 65, pp. 15- 23 ,(1994) , 10.1016/S0257-8972(94)80003-0
K Oda, K Umezu, H Ino, Interaction and arrangement of nitrogen atoms in FCC γ-iron Journal of Physics: Condensed Matter. ,vol. 2, pp. 10147- 10158 ,(1990) , 10.1088/0953-8984/2/50/018
S. Parascandola, W. Möller, D. L. Williamson, The nitrogen transport in austenitic stainless steel at moderate temperatures Applied Physics Letters. ,vol. 76, pp. 2194- 2196 ,(2000) , 10.1063/1.126294