Key polynomials and a flagged Littlewood-Richardson rule

作者: Victor Reiner , Mark Shimozono

DOI: 10.1016/0097-3165(95)90083-7

关键词:

摘要: Abstract This paper studies a family of polynomials called key , introduced by Demazure and investigated combinatorially Lascoux Schutzenberger. We give two new combinatorial interpretations for these show how they provide the connection between relatively recent expressions Schubert . also flagged Littlewood—Richardson rule an expansion skew Schur function as nonnegative sum polynomials.

参考文章(11)
A. Lascoux, M.P. Schützenberger, A New Statistics on Words Combinatorial Mathematics, Optimal Designs and Their Applications. ,vol. 6, pp. 251- 255 ,(1980) , 10.1016/S0167-5060(08)70709-X
Sara C. Billey, William Jockusch, Richard P. Stanley, Some Combinatorial Properties of Schubert Polynomials Journal of Algebraic Combinatorics. ,vol. 2, pp. 345- 374 ,(1993) , 10.1023/A:1022419800503
Ian Grant Macdonald, Notes on Schubert polynomials LACIM, Université du Québec à Montréal. ,(1991)
Alain Lascoux, Marcel-Paul Sch�tzenberger, Schubert polynomials and the Littlewood-Richardson rule Letters in Mathematical Physics. ,vol. 10, pp. 111- 124 ,(1985) , 10.1007/BF00398147
Michelle L Wachs, Flagged Schur Functions, Schubert Polynomials, and Symmetrizing Operators Journal of Combinatorial Theory, Series A. ,vol. 40, pp. 276- 289 ,(1985) , 10.1016/0097-3165(85)90091-3
Dennis E White, Some connections between the Littlewood-Richardson rule and the construction of Schensted Journal of Combinatorial Theory, Series A. ,vol. 30, pp. 237- 247 ,(1981) , 10.1016/0097-3165(81)90020-0
Glânffrwd P Thomas, On Schensted's construction and the multiplication of schur functions Advances in Mathematics. ,vol. 30, pp. 8- 32 ,(1978) , 10.1016/0001-8708(78)90129-9
S. Fomin, R.P. Stanley, Schubert Polynomials and the Nilcoxeter Algebra Advances in Mathematics. ,vol. 103, pp. 196- 207 ,(1994) , 10.1006/AIMA.1994.1009
J.B Remmel, R Whitney, Multiplying Schur Functions Journal of Algorithms. ,vol. 5, pp. 471- 487 ,(1984) , 10.1016/0196-6774(84)90002-6
Axel Kohnert, Weintrauben, Polynome, Tableaux Universität. ,(2006)