Schubert polynomials and Bott-Samelson varieties

作者: P. Magyar

DOI: 10.1007/S000140050071

关键词:

摘要: Schubert polynomials generalize Schur polynomials, but it is not clear how to several classical formulas: the Weyl character formula, Demazure and generating series of semistandard tableaux. We produce these missing formulas obtain surprising expressions for polynomials.¶The above results arise naturally from a new geometric model in terms Bott-Samelson varieties. Our analysis includes new, explicit construction variety Z as closure B-orbit product flag This works an arbitrary reductive group G, G = GL(n) realizes representations certain partially ordered set.¶This poset unifies well-known combinatorial structures: generalized Young diagrams with their associated modules; reduced decompositions permutations; chamber sets Berenstein-Fomin-Zelevinsky, which are crucial combinatorics canonical bases matrix factorizations. On other hand, our embedding gives elementary its coordinate ring, allows us specify basis indexed by

参考文章(19)
Michel Demazure, Désingularisation des variétés de Schubert généralisées Annales Scientifiques De L Ecole Normale Superieure. ,vol. 7, pp. 53- 88 ,(1974) , 10.24033/ASENS.1261
Ian Grant Macdonald, Notes on Schubert polynomials LACIM, Université du Québec à Montréal. ,(1991)
Nicolas Bourbaki, Groupes et algèbres de Lie Hermann. ,(1971)
Venkatramani Lakshmibai, Peter Magyar, Standard Monomial Theory for Bott-Samelson Varieties of GL(n) Publications of The Research Institute for Mathematical Sciences. ,vol. 34, pp. 229- 248 ,(1998) , 10.2977/PRIMS/1195144694
Victor Reiner, Mark Shimozono, Key polynomials and a flagged Littlewood-Richardson rule Journal of Combinatorial Theory, Series A. ,vol. 70, pp. 107- 143 ,(1995) , 10.1016/0097-3165(95)90083-7
Arkady Berenstein, Sergey Fomin, Andrei Zelevinsky, Parametrizations of Canonical Bases and Totally Positive Matrices Advances in Mathematics. ,vol. 122, pp. 49- 149 ,(1996) , 10.1006/AIMA.1996.0057
Sergey Fomin, Curtis Greene, Victor Reiner, Mark Shimozono, Balanced Labellings and Schubert Polynomials The Journal of Combinatorics. ,vol. 18, pp. 373- 389 ,(1997) , 10.1006/EUJC.1996.0109
Peter Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Inventiones Mathematicae. ,vol. 116, pp. 329- 346 ,(1994) , 10.1007/BF01231564
I N Bernstein, I M Gel'fand, S I Gel'fand, SCHUBERT CELLS AND COHOMOLOGY OF THE SPACES G/P Russian Mathematical Surveys. ,vol. 28, pp. 1- 26 ,(1973) , 10.1070/RM1973V028N03ABEH001557