A multilevel Monte Carlo method for asymptotic-preserving particle schemes in the diffusive limit

作者: Stefan Vandewalle , Giovanni Samaey , Emil Løvbak

DOI: 10.1007/S00211-021-01201-Y

关键词:

摘要: Kinetic equations model distributions of particles in position-velocity phase space. Often, one is interested studying the long-time behavior high-collisional regimes which an approximate (advection)-diffusion holds. In this paper we consider diffusive scaling. Classical particle-based techniques suffer from a strict time-step restriction limit, to maintain stability. Asymptotic-preserving schemes avoid problem, but introduce additional time discretization error, possibly resulting unacceptably large bias for larger steps. Here, present and analyze multilevel Monte Carlo scheme that reduces by combining estimates using hierarchy different step sizes. We demonstrate how correlate trajectories scheme, also strategy selecting levels scheme. Our approach significantly computation required perform accurate simulations considered kinetic equations, compared classical approaches.

参考文章(43)
Alan Craig, E. Pardoux, Bernard Lapeyre, Rémi Sentis, Fionn Craig, Introduction to Monte-Carlo Methods for Transport and Diffusion Equations ,(2003)
C.K. Birdsall, A.B Langdon, Plasma Physics via Computer Simulation Plasma Physics via Computer Simulation. ,(1991) , 10.1201/9781315275048
Abdul-Lateef Haji-Ali, Fabio Nobile, Raúl Tempone, Multi-index Monte Carlo: when sparsity meets sampling Numerische Mathematik. ,vol. 132, pp. 767- 806 ,(2016) , 10.1007/S00211-015-0734-5
Stefan Heinrich, Multilevel Monte Carlo Methods international conference on large scale scientific computing. pp. 58- 67 ,(2001) , 10.1007/3-540-45346-6_5
Shi Jin, Lorenzo Pareschi, Giuseppe Toscani, Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations SIAM Journal on Numerical Analysis. ,vol. 35, pp. 2405- 2439 ,(1998) , 10.1137/S0036142997315962
Giovanni Naldi, Lorenzo Pareschi, Numerical Schemes for Hyperbolic Systems of Conservation Laws with Stiff Diffusive Relaxation SIAM Journal on Numerical Analysis. ,vol. 37, pp. 1246- 1270 ,(2000) , 10.1137/S0036142997328810
G. Dimarco, L. Pareschi, Numerical methods for kinetic equations Acta Numerica. ,vol. 23, pp. 369- 520 ,(2014) , 10.1017/S0962492914000063
Laurent Gosse, Giuseppe Toscani, An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations Comptes Rendus Mathematique. ,vol. 334, pp. 337- 342 ,(2002) , 10.1016/S1631-073X(02)02257-4
Lorenzo Pareschi, Giovanni Russo, An introduction to Monte Carlo method for the Boltzmann equation ESAIM: Proceedings. ,vol. 10, pp. 35- 75 ,(2001) , 10.1051/PROC:2001004