A kernel density smoothing method for determining an optimal number of clusters in continuous data

作者: J. Bugrien , K. Mwitondi , F. Shuweihdi

DOI: 10.2495/RISK140151

关键词:

摘要: While data clustering algorithms are becoming increasingly popular across scientific, industrial and social mining applications, model complexity remains a major challenge. Most do not incorporate mechanism for finding an optimal scale parameter that corresponds to appropriate number of clusters. We propose , kernel-density smoothing-based approach clustering. Its main ideas derive from two unsupervised approaches – kernel density estimation (KDE) scale-spacing (SSC). The novel method determines the clusters by first dense regions in before separating them based on data-dependent estimates. is determined different levels smoothing after inherent arbitrary shape has been detected without priori information. demonstrate applicability proposed under both nested non-nested hierarchical methodologies. Simulated real results presented validate performance method, with repeated runs showing high accuracy reliability.

参考文章(13)
Kassim S. Mwitondi, Raeed T. Said, Adil E. Yousif, A sequential data mining method for modelling solar magnetic cycles international conference on neural information processing. pp. 296- 304 ,(2012) , 10.1007/978-3-642-34475-6_36
Jean Babaud, Andrew P. Witkin, Michel Baudin, Richard O. Duda, Uniqueness of the Gaussian Kernel for Scale-Space Filtering IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-8, pp. 26- 33 ,(1986) , 10.1109/TPAMI.1986.4767749
Karen Kafadar, Adrian W. Bowman, Adelchi Azzalini, Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations Journal of the American Statistical Association. ,vol. 94, pp. 982- ,(1999) , 10.2307/2670015
R. A. FISHER, THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS Annals of Human Genetics. ,vol. 7, pp. 179- 188 ,(1936) , 10.1111/J.1469-1809.1936.TB02137.X
Alan L. Yuille, Tomaso A. Poggio, Scaling Theorems for Zero Crossings IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. PAMI-8, pp. 15- 25 ,(1986) , 10.1109/TPAMI.1986.4767748
R. Wilson, M. Spann, A new approach to clustering Pattern Recognition. ,vol. 23, pp. 1413- 1425 ,(1990) , 10.1016/0031-3203(90)90087-2
Jan J. Koenderink, The structure of images Biological Cybernetics. ,vol. 50, pp. 363- 370 ,(1984) , 10.1007/BF00336961
Stephen J. Roberts, Parametric and non-parametric unsupervised cluster analysis Pattern Recognition. ,vol. 30, pp. 261- 272 ,(1997) , 10.1016/S0031-3203(96)00079-9
Andrew P. Witkin, Scale-space filtering international joint conference on artificial intelligence. pp. 329- 332 ,(1987) , 10.1016/B978-0-08-051581-6.50036-2