A sequential data mining method for modelling solar magnetic cycles

作者: Kassim S. Mwitondi , Raeed T. Said , Adil E. Yousif

DOI: 10.1007/978-3-642-34475-6_36

关键词: Support vector machineData miningCluster analysisComputer scienceClass (biology)Sequential data

摘要: We propose an adaptive data-driven approach to modelling solar magnetic activity cyclesbased on a sequential link between unsupervised and supervised modelling. Monthly sunspot numbers spanning over hundreds of years --- from the mid-18th century first quarter 2012 - obtained Royal Greenwich Observatory provide reliable source training validation sets.An indicator variable is used generate class labels internal parameters which are separate high low cycles. Our results show that by maximising data-dependent using them as inputs support vector machine model we obtain comparatively more robust predictions. Finally, demonstrate how method can be adapted other applications.

参考文章(15)
J McLachlan, G, D. Peel, Finite Mixture Models ,(2000)
Mark A. Clilverd, Ellen Clarke, Thomas Ulich, Henry Rishbeth, Martin J. Jarvis, Predicting Solar Cycle 24 and beyond Space Weather-the International Journal of Research and Applications. ,vol. 4, ,(2006) , 10.1029/2005SW000207
T. Colak, R. Qahwaji, Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares Space Weather-the International Journal of Research and Applications. ,vol. 7, ,(2009) , 10.1029/2008SW000401
David M.J. Tax, Robert P.W. Duin, Support Vector Data Description Machine Learning. ,vol. 54, pp. 45- 66 ,(2004) , 10.1023/B:MACH.0000008084.60811.49
V. M. Silbergleit, Probable Values of Current Solar Cycle Peak Advances in Astronomy. ,vol. 2012, pp. 167375- ,(2012) , 10.1155/2012/167375
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum Likelihood from Incomplete Data Via theEMAlgorithm Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 39, pp. 1- 22 ,(1977) , 10.1111/J.2517-6161.1977.TB01600.X
F. J. M. Stratton, International astronomical union Astronomische Nachrichten. ,vol. 253, pp. 191- 192 ,(1931) , 10.1002/ASNA.19342530904
Geoffrey J. McLachlan, Thriyambakam Krishnan, The EM algorithm and extensions ,(1996)
Corinna Cortes, Vladimir Vapnik, Support-Vector Networks Machine Learning. ,vol. 20, pp. 273- 297 ,(1995) , 10.1023/A:1022627411411